1
|
Das P, Barik SK, Bal M. Microplastic transport dynamics and the path forward with magnetic nanoparticle based solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125496. [PMID: 40306211 DOI: 10.1016/j.jenvman.2025.125496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 05/02/2025]
Abstract
Microplastics (MPs) have been found widely in aquatic systems and recognized as harmful pollutants for both human health and the environment. As a consequence, it has become essential to find solutions to resolve this issue. This study summarizes the extensive distribution of MPs across various aquatic environments. This paper highlights different types of magnetic nanoparticle and their efficiencies, retention time, kinetics or isotherms models and mechanisms of removal for different types of pollutants as well as MPs. Moreover, this study offers an extensive exploration of the interactions between magnetic nanoparticles (MNPs) and MPs, exploring the inherent mechanism of aggregation in detail. Furthermore, it highlights the recent developments in understanding the effectiveness of MNPs in removing MPs, demonstrating recent advancements in this area of research. It assesses the working principles, benefits, and drawbacks of various synthesis methods for nanoparticle formation, which have high potential for the remediation of MPs. Additionally, this work provides the potential future directions for further research. This comprehensive study uncovers key factors that could be significantly helpful in the development of remediation techniques that are more sustainable and effective.
Collapse
Affiliation(s)
- Payal Das
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Sudhir Kumar Barik
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India
| | - Manisha Bal
- Department of Chemical Engineering, National Institute of Technology Durgapur, Durgapur, West Bengal, 713209, India.
| |
Collapse
|
2
|
Song Y, Liu Z, Zhang Q. Engineering the future: Unveiling novel paths in heavy metal wastewater remediation with advanced carbon-based nanomaterials - Beyond performance comparison, tackling challenges, and exploring opportunities. CHEMOSPHERE 2024; 366:143477. [PMID: 39374670 DOI: 10.1016/j.chemosphere.2024.143477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
This review addresses the pressing issue of heavy metal pollution in water, specifically focusing on the application of adsorption technology utilizing carbon materials such as biochar, carbon nanotubes, graphene, and carbon quantum dots. Utilizing bibliometric analysis with VOSviewer based on Web of Science core dataset, this study identifies research hotspots related to carbon-based materials in heavy metal applications over the past decade. However, existing literature still lacks sufficient comparative analysis of the potential of carbon-based materials' structural characteristics and inherent advantages in heavy metal applications. This review strategically addresses this gap, offering a comprehensive comparative analysis of these four materials from an engineering application perspective. It offers a thorough evaluation of their suitability for various water treatment applications, providing a detailed examination of their advantages and limitations in heavy metal application. Additionally, the review provides insights into performance comparisons, addresses challenges, and explores emerging opportunities in this field. Insights into potential application fields based on structural characteristics and inherent advantages are presented. This unique focus on a comprehensive comparative analysis distinguishes the article, offering a nuanced perspective on the strengths and future possibilities of carbon materials in tackling the global challenge of heavy metal pollution in water.
Collapse
Affiliation(s)
- Yaran Song
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhanqi Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
3
|
Lim CC, Shuit SH, Ng QH, Rahim SKEA, Hoo PY, Yeoh WM, Goh SW. Sulfonated magnetic multi-walled carbon nanotubes with enhanced bonding stability, high adsorption performance, and reusability for water remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40242-40259. [PMID: 36604398 DOI: 10.1007/s11356-022-25064-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
In view of the simple and rapid conveniency of magnetic separation, magnetic nanocomposites had notably gained attention from researchers for environmental field applications. In this work, carboxylated magnetic multi-walled carbon nanotubes (c-MMWCNTs) and novel sulfonated MMWCNTs (s-MMWCNTs) were synthesized by a facile solvent-free direct doping method. Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscope, energy dispersive X-ray, vibrating sample magnetometer, and point of zero charge analyses confirmed the successful doping of the Fe3O4 nanoparticles into the functionalized MWCNTs to form MMWCNTs. Besides, the bonding stabilities of both c-MMWCNTs and s-MMWCNTs were compared, and results showed that s-MMWCNTs possessed more substantial bonding stability than that of c-MMWCNTs with significantly less leaching amount of Fe3O4. The adsorption capacity of s-MMWCNTs was higher than that of c-MMWCNTs owing to the stronger electronegativity sulfonic group in s-MMWCNTs. Moreover, the reusability experiments proved that the adsorbent remained consistently excellent MB removal efficiency (R > 94%) even reused for twelve cycles of batch adsorption. The finding of the present work highlights the simple fabrication of novel s-MMWCNTs and its potential to be served as a promising and sustainable adsorbent for water remediation owing to its enhanced bonding stability, high adsorption performance, magnetic separability, and supreme recyclability.
Collapse
Affiliation(s)
- Chuan Chuan Lim
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Siew Hoong Shuit
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering & Science, Universiti Tunku Abdul Rahman, Sungai Long Campus, Jalan Sungai Long, Bandar Sungai Long, Cheras, 43000, Kajang, Selangor, Malaysia
| | - Qi Hwa Ng
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
- Centre of Excellence for Frontier Materials Research, (CFMR), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Siti Kartini Enche Ab Rahim
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Peng Yong Hoo
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
- Centre of Excellence for Frontier Materials Research, (CFMR), Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Wei Ming Yeoh
- Department of Petrochemical Engineering, Universiti Tunku Abdul Rahman, 31900, Perak, Kampar, Malaysia
| | - Soon Wah Goh
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| |
Collapse
|
4
|
Poornachandhra C, Jayabalakrishnan RM, Prasanthrajan M, Balasubramanian G, Lakshmanan A, Selvakumar S, John JE. Cellulose-based hydrogel for adsorptive removal of cationic dyes from aqueous solution: isotherms and kinetics. RSC Adv 2023; 13:4757-4774. [PMID: 36760285 PMCID: PMC9900603 DOI: 10.1039/d2ra08283g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
The development of economic and recyclable adsorbents for removing pollutants from contaminated water is gaining increasing attention. Agro residue or nature-based material sourced absorbents could revolutionize the future of wastewater treatment. Hence in this study, nanocellulose was synthesized from coconut husk fiber and immobilized onto chitosan to form hydrogel beads. The BET surface area and zeta potential of the adsorbent nanocrystalline cellulose-chitosan hydrogel (NCC-CH) bead was 25.77 m2 g-1 and +50.6 mV, respectively. The functional group analysis also confirmed that the adsorbent had functional groups appropriate for the adsorption of textile dyes. The adsorption performance of NCC-CH and also the influence of initial dye concentration, adsorbent dose, pH, and contact time was evaluated by batch adsorption studies with crystal violet (CV) and methylene blue (MB) dyes. The most favorable operational conditions achieved through I-optimal design in response surface methodology were 0.5 g NCC-CH, 1 h, 9 pH, and 60 mg L-1 for CV removal (94.75%) and 0.13 g NCC-CH, 1 h, 9 pH, and 30 mg L-1 for MB removal (95.88%). The polynomial quadratic model fits the experimental data with an R 2 value of 0.99 and 0.98 for CV and MB removal, respectively. The optimum depiction of the isotherm data was obtained using the Freundlich model for MB adsorption and Freundlich and Langmuir model for CV adsorption. The Dubinin-Radushkevich (D-R) isotherm was also a good fit to the adsorption of CV and MB dye, suggesting the physisorption due to its free energy of adsorption < 8 kJ mol-1. The kinetics were effectively explained by a pseudo-second order model for both the dyes suggesting that chemical mechanisms influenced the adsorption of CV and MB dyes onto NCC-CH. The intraparticle diffusion model best suited the MB adsorption with three stages rather than the CV with a single step process. Also, the removal efficiency of adsorbent was retained at above 60% even after seven adsorption-desorption cycles indicating the effectiveness of the NCC-CH hydrogel beads for the removal of textile dyes.
Collapse
Affiliation(s)
| | | | - Mohan Prasanthrajan
- Department of Environmental Sciences, Tamil Nadu Agricultural University India
| | | | | | - S Selvakumar
- Water Technology Centre, Tamil Nadu Agricultural University India
| | - Joseph Ezra John
- Department of Environmental Sciences, Tamil Nadu Agricultural University India
| |
Collapse
|
5
|
Fekry M, Elmesallamy SM, El-Rahman NRA, Bekhit M, Elsaied HA. Eco-friendly adsorbents based on abietic acid, boswellic acid, and chitosan/magnetite for removing waste oil from the surface of the water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64633-64646. [PMID: 35474426 PMCID: PMC9481516 DOI: 10.1007/s11356-022-20169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Petroleum oil leakage and industrial oily waste on the water surface are sustainable pollutions. The removal process by eco-friendly adsorbents is a critical challenge. It also requires sustainable treatment. The natural hydrophobic material such as abietic acid, boswellic acid, and chitosan was added to magnetite nanoparticles with different concentrations of 10, 15, and 20% on its surface. The magnetite acquires partially hydrophobic properties. The prepared natural adsorbents were analyzed by employing wide-angle X-ray diffraction (WAXD), vibrating sample magnetometer (VSM), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), particle size and zeta potential, and contact angle measurements. Chitosan adsorbs at the outer surface of magnetite nanoparticles while boswellic and abietic absorb in bulk. All prepared adsorbents are effective in adsorbing waste oil from the water surface. The contact angle of MB20 (magnetite/20 percent boswellic) is greater than that of MA20 and MC20 (magnetite/20% abietic or chitosan, respectively), indicating that it has more hydrophobic characteristics. The oil removal efficiency and adsorption capacity of MB20 are the highest values 57.6%, and 24 g/g, respectively. All eco-friendly adsorbents are nontoxic with low-cost production and are used many times.
Collapse
Affiliation(s)
- Mohamed Fekry
- Polymer Lab, Petrochemical Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt.
| | - Salwa M Elmesallamy
- Polymer Lab, Petrochemical Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Nasser R Abd El-Rahman
- Polymer Lab, Petrochemical Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Mahmoud Bekhit
- Surfactant Lab, Petrochemical Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| | - Hend Alaidy Elsaied
- Polymer Lab, Petrochemical Department, Egyptian Petroleum Research Institute, Nasr City, Cairo, Egypt
| |
Collapse
|
6
|
Huang H, Yang Q, Zhang L, Huang C, Liang Y. Polyacrylamide modified kaolin enhances adsorption of sodium alginate/carboxymethyl chitosan hydrogel beads for copper ions. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.02.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|