1
|
Lv X, Zhang M, Ji K, Zhou C, Hua J. Evaluation of ginger straw as a forage source for goats: Effects on performance, ruminal fermentation, meat quality and immunity. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2025; 21:1-10. [PMID: 40135171 PMCID: PMC11930580 DOI: 10.1016/j.aninu.2024.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/19/2024] [Accepted: 11/20/2024] [Indexed: 03/27/2025]
Abstract
This study aimed to investigate the effects of ginger straw as a replacement of peanut straw on the growth, meat quality, rumen fermentation, and immunity of goats. In this study, 40 Huanghuai male goats, weighing 30 ± 0.5 kg at six months of age, were selected and randomly divided into four treatments: ginger straw 0% (G0), 5% (G5), 10% (G10) and 20% (G20) replacing peanut straw, with 10 goats in each treatment. Goat dry matter intake (DMI) improved as the proportion of peanut straws replaced with ginger straws increased (linear, P < 0.001, quadratic, P < 0.001). The highest average daily gain (ADG) and the lowest feed-to-gain ratio (F/G) were observed in G5 goats (P < 0.001). The digestibilities of neutral detergent fibre (NDF, P = 0.031) and acid detergent fibre (ADF, P = 0.014) were higher in the G5 group than in G10 and G20. With increasing ginger straw replacement, the plasma interleukin-10 (IL-10) levels increased (linear, P = 0.035, quadratic, P = 0.041). The microbial protein (MCP) increased as the proportion of ginger straw increased (linear, P = 0.034, quadratic, P = 0.041). The butyrate was increased (linear, P = 0.028, quadratic, P = 0.035) at all levels of ginger straw inclusion into the diet. A linear (P < 0.001) increase in the height of the jejunal mucosal villi was observed as the proportion of ginger straw in the diet increased. The tight junction protein 1 (TJP1) and claudin-1 mRNA expression in the jejunal mucosa were significantly higher in groups G5, G10, and G20 than in the G0 group (P < 0.001). In general, substituting peanut straw with ginger straw in goat diets promoted rumen fermentation and produced more volatile fatty acids and microbial proteins to meet the needs of goats for improved growth performance. Substituting ginger straw for peanut straw improved immunity and the intestinal barrier in goats and did not adversely affect meat quality. Replacing peanut straw with 5% ginger straw in the goat diet resulted in higher NDF digestibility and growth performance. Therefore, the replacement of peanut straw with 5% ginger straw in goat diets is recommended.
Collapse
Affiliation(s)
- Xiaokang Lv
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| | - Min Zhang
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| | - Ke Ji
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| | - Chuanshe Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Key Laboratory of Animal Nutrition & Physiology and Metabolism, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Jinling Hua
- College of Animal Science, Anhui Science and Technology University, Fengyang 233100, Anhui, China
| |
Collapse
|
2
|
Khursheed S, Dutta J, Ahmad I, Rather MA, Badroo IA, Bhat TA, Ahmad I, Amin A, Shah A, Qadri T, Habib H. Biogenic silver nanoparticles: Synthesis, applications and challenges in food sector with special emphasis on aquaculture. Food Chem X 2023; 20:101051. [PMID: 38144846 PMCID: PMC10740048 DOI: 10.1016/j.fochx.2023.101051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/26/2023] Open
Abstract
Aquaculture, a rapidly expanding global food sector faces challenges like pathogenic infections, water quality management and sustainability. Silver nanoparticles (AgNPs) have emerged as promising tools in aquaculture due to their antimicrobial, antiviral and antifungal properties. AgNPs offer alternatives to traditional antimicrobial agents. Their small size and unique physicochemical properties enhance antimicrobial activity, effectively inhibiting pathogen growth and reducing disease incidence in aquatic organisms. Additionally, AgNPs can improve water quality by catalyzing the removal of pollutants, heavy metals and nutrients, reducing environmental impacts. Despite their potential benefits, several challenges and knowledge gaps exist in the utilization of AgNPs in aquaculture. Addressing challenges related to regulation, sustainability and environmental impact will be crucial for realizing their full potential in the industry. Therefore, the present review aims to provide insight into the role of AgNPs, its challenges in aquaculture and also highlights key areas for future research.
Collapse
Affiliation(s)
- Saba Khursheed
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Joydeep Dutta
- Department of Zoology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Ishtiyaq Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Irfan Ashraf Badroo
- Government Degree College Women Sopore, Kashmir, Jammu and Kashmir 193201, India
| | - Tashooq Ahmad Bhat
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Jammu and Kashmir 190025, India
| | - Irfan Ahmad
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Adnan Amin
- Division of Aquatic Environmental Management, Faculty of Fisheries, Rangil, Ganderbal, SKUAST-Kashmir, 190006, India
| | - Azra Shah
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries Ganderbal, Sher-e- Kashmir University of Agricultural Science and Technology, Kashmir 190006, India
| | - Tahiya Qadri
- Division of Food Science and Technology, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir, Jammu and Kashmir 190025, India
| | - Huraiya Habib
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Nano-Nutraceuticals for Health: Principles and Applications. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2023; 33:73-88. [PMID: 36466145 PMCID: PMC9684775 DOI: 10.1007/s43450-022-00338-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
The use of nanotechnological products is increasing steadily. In this scenario, the application of nanotechnology in food science and as a technological platform is a reality. Among the several applications, the main use of this technology is for the development of foods and nutraceuticals with higher bioavailability, lower toxicity, and better sustainability. In the health field, nano-nutraceuticals are being used as supplementary products to treat an increasing number of diseases. This review summarizes the main concepts and applications of nano-nutraceuticals for health, with special focus on treating cancer and inflammation. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-022-00338-7.
Collapse
|
4
|
Gu Y, Han J, Wang W, Zhan Y, Wang H, Hua W, Liu Y, Guo Y, Xue Z, Wang W. Dietary Cinnamaldehyde Enhances Growth Performance, Digestion, Immunity, and Lipid Metabolism in Juvenile Fat Greenling ( Hexagrammos otakii). AQUACULTURE NUTRITION 2022; 2022:2132754. [PMID: 36860471 PMCID: PMC9973157 DOI: 10.1155/2022/2132754] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/08/2022] [Accepted: 09/28/2022] [Indexed: 06/18/2023]
Abstract
Fat greenling (Hexagrammos otakii) is a kind of economic fish that is widely consumed by human, and its intensive farming technology is making important progress. However, high-density farming may cause the occurrence of diseases in H. otakii. Cinnamaldehyde (CNE) is a new feed additive for aquatic animals and has a positive effect on disease resistance. In the study, dietary CNE was evaluated on the growth performance, digestion, immune response, and lipid metabolism of juvenile H. otakii (6.21 ± 0.19 g). Six experimental diets were formulated containing CNE at levels of 0, 200, 400, 600, 800, and 1000 mg/kg for 8 weeks. The percent weight gain (PWG), specific growth rate (SGR), survival (SR), and feeding rate (FR) were significantly increased by including CNE in fish diets regardless of the inclusion level (P < 0.05). The feed conversion ratio (FCR) was significantly decreased among the groups fed CNE supplemented diets (P < 0.05). A significant decrease in hepatosomatic index (HSI) was observed in fish fed 400 mg/kg-1000 mg/kg CNE compared to the control diet (P < 0.05). Fish-fed diets containing 400 mg/kg and 600 mg/kg CNE had a higher level of crude protein in muscles than the control diet (P < 0.05). Moreover, the activities of lipase (LPS) and pepsin (PEP) in the intestinal were markedly increased in juvenile H. otakii-fed dietary CNE (P < 0.05). Apparent digestibility coefficient (ADC) of dry matter, protein, and lipid was significantly increased with CNE supplement (P < 0.05). The activities of catalase (CAT) and acid phosphatase (ACP) in the liver were markedly enhanced by including CNE in juvenile H. otakii diets compared with the control (P < 0.05). The activities of superoxide dismutase (SOD) and alkaline phosphatase (AKP) in the liver were markedly enhanced in juvenile H. otakii treated with CNE supplements 400 mg/kg-1000 mg/kg (P < 0.05). Additionally, the levels of total protein (TP) in the serum were markedly increased by including CNE in juvenile H. otakii diets compared with the control (P < 0.05). In the CNE200, CNE400, and CNE600 groups, albumin (ALB) levels in the serum were markedly higher compared with that in the control (P < 0.05). In the CNE200 and CNE400 groups, the levels of immunoglobulin G (IgG) in the serum were significantly increased compared with that the control group (P < 0.05). The juvenile H. otakii-fed dietary CNE had lower triglycerides (TG) and total cholesterol (TCHO) levels in the serum than fish-fed CNE-free diets (P < 0.05). The gene expression of peroxisome proliferator-activated receptor alpha (PPAR-α), hormone-sensitive lipase (HSL), and carnitine O-palmitoyltransferase 1 (CPT1) in the liver was significantly increased by including CNE in fish diets regardless of the inclusion level (P < 0.05). However, fatty acid synthase (FAS), peroxisome proliferator-activated receptor gamma (PPAR-γ), and acetyl-CoA carboxylase alpha (ACCα) in the liver were markedly decreased with CNE supplements 400 mg/kg-1000 mg/kg (P < 0.05). The glucose-6-phosphate1-dehydrogenase (G6PD) gene expression levels in the liver were markedly decreased compared with the control (P < 0.05). The optimal supplementation level of CNE was shown by curve equation analysis to be 590.90 mg/kg.
Collapse
Affiliation(s)
- Yixin Gu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Jian Han
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Wenjie Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yu Zhan
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Huijie Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Wenyuan Hua
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yue Liu
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Yafeng Guo
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Zhuang Xue
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| | - Wei Wang
- Key Laboratory of Applied Biology and Aquaculture of Northern Fishes in Liaoning Province, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
5
|
Rohmah MK, Salahdin OD, Gupta R, Muzammil K, Qasim MT, Al-Qaim ZH, Abbas NF, Jawad MA, Yasin G, Mustafa YF, Heidary A, Abarghouei S. Modulatory role of dietary curcumin and resveratrol on growth performance, serum immunity responses, mucus enzymes activity, antioxidant capacity and serum and mucus biochemicals in the common carp, Cyprinus carpio exposed to abamectin. FISH & SHELLFISH IMMUNOLOGY 2022; 129:221-230. [PMID: 36007834 DOI: 10.1016/j.fsi.2022.08.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
In this study, we investigate the potentials of dietary curcumin and resveratrol on blood biochemistry, immune responses and resistance to the toxicity of the pesticide, abamectin. 540 common carps (30.78 ± 0.17 g) were randomly distributed into 18 tanks (30 fish per tank), as six experimental groups (T1: non-supplemented and on-exposed fish, T2: 300 mg/kg curcumin, T3: 300 mg/kg resveratrol, T4: 12.5% LC50 of abamectin, T5: 300 mg/kg curcumin +12.5% LC50 of abamectin, T6: 300 mg/kg resveratrol + 12.5% LC50 of abamectin). Use of 300 mg/kg resveratrol in the diet of non-abamectin exposed fish improved the growth performance (P < 0.05), while such effects were not observed for curcumin (P > 0.05). There were no differences in the final weight (FW), feed conversion ratio (FCR) and weight gain (WG) between control and fish of the treatments, resveratrol + abamectin and curcumin + abamectin (P < 0.05). The immune components in blood [lysozyme, complement activity, Total immunoglobulin (total Ig), protease, myeloperoxidase (MPO), nitro-blue-tetrazolium (NBT), peroxidase, albumin] and mucus [acid phosphatase (ACP), alkaline phosphatase (ALP), esterase, antiprotease)] and antioxidant enzymes [(superoxide dismutase (SOD), glutathione peroxidase (GPx)] exhibited various change patterns compared to the control group, however, these components were almost all higher in fish supplemented with curcumin and resveratrol in an abamectin-free medium than in control and other groups (P < 0.05). In most cases, the levels of immune and antioxidant components in the control did not show significant difference with the treatments, resveratrol + abamectin and curcumin + abamectin (P > 0.05). Abamectin induced oxidative stress in fish, as the malondialdehyde (MDA) levels significantly increased in the exposed fish compared to non-exposed groups (P < 0.05). It appears that neither curcumin nor resveratrol were as effective in preventing oxidative stress, because MDA levels were higher in exposed fish (abamectin, curcumin + abamectin, resveratrol + abamectin) than in control and non-exposed individuals (P < 0.05). Curcumin and resveratrol also showed protective effects on liver, since the levels of liver metabolic enzymes [aspartate transaminase (AST), ALP, lactate dehydrogenase (LDH)] were lower in the supplemented fish in a abamectin-free medium than in control (P < 0.05). Curcumin and resveratrol also mitigated the stress responses in the exposed fish, as cortisol and glucose levels showed significant decreases in the supplemented fish (P < 0.05). In conclusion, this study revealed that abamectin can depress the growth and immunity in the common carp. Although, both resveratrol and curcumin were mitigated the toxic effects of abamectin, it seems that resveratrol be more effective than curcumin.
Collapse
Affiliation(s)
- Martina Kurnia Rohmah
- Department of Pharmacy, Faculty of Health Science, Universitas Anwar Medika, Sidoarjo, Indonesia.
| | | | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India.
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, Saudi Arabia
| | - Maytham T Qasim
- Department of Anesthesia, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | | | | | - Ghulam Yasin
- Department of Botany, Bahauddin Zakariya University, Multan, Pakistan
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Aadel Heidary
- Environmental Expert of Farsan Municipality, Shahrekord, Iran
| | - Safoura Abarghouei
- Baharavaran Nastaran Agricultural Applied Scientific Training Center, Applied Scientific University, Qom, Iran
| |
Collapse
|