1
|
de Souza Cardoso AA, Nunes APP, Batista ÉR, Nataren LDCH, Nunes MFPN, Gomes FTDL, Leite ADA, Guilherme LRG, Faquin V, Silva MLDS. Sulfate supply decreases barium availability, uptake, and toxicity in lettuce plants grown in a tropical Ba-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53938-53947. [PMID: 36869946 DOI: 10.1007/s11356-023-25960-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Barium (Ba) is a non-essential element that can cause toxicity in living organisms and environmental contamination. Plants absorb barium predominantly in its divalent cationic form Ba2+. Sulfur (S) can decrease the availability of Ba2+ in the soil by causing its precipitation as barium sulfate, a compound known for its very low solubility. The objective of this study was to evaluate the effect of soil sulfate supply in soil Ba fractions, as well as on plant growth, and Ba and S uptake by lettuce plants grown in artificially Ba-contaminated soil under greenhouse conditions. The treatments consisted of five Ba doses (0, 150, 300, 450, and 600 mg kg-1 Ba, as barium chloride) combined with three S doses (0, 40, and 80 mg kg-1 S, as potassium sulfate). The treatments were applied to soil samples (2.5 kg) and placed in plastic pots for plant cultivation. The Ba fractions analyzed were extractable-Ba, organic matter-Ba, oxides associated-Ba, and residual-Ba. The results indicate that the extractable-Ba fraction was the main one responsible for Ba bioavailability and phytotoxicity, probably corresponding to the exchangeable Ba in the soil. The dose of 80 mg kg-1 of S reduced extractable-Ba by 30% at higher Ba doses while it increased the other fractions. Furthermore, S supply attenuated the growth inhibition in plants under Ba exposure. Thus, S supply protected the lettuce plants from Ba toxicity by reduction of Ba availability in soil and plant growth enhancement. The results suggest that sulfate supply is a suitable strategy for managing Ba-contaminated areas.
Collapse
Affiliation(s)
| | - Ana Paula Pereira Nunes
- Soil Science Department, Federal University of Lavras (ESAL-UFLA), Lavras, MG, 37200-900, Brazil
| | - Éder Rodrigues Batista
- Soil Science Department, Federal University of Lavras (ESAL-UFLA), Lavras, MG, 37200-900, Brazil
| | | | | | | | - Aline do Amaral Leite
- Soil Science Department, Federal University of Lavras (ESAL-UFLA), Lavras, MG, 37200-900, Brazil
| | | | - Valdemar Faquin
- Soil Science Department, Federal University of Lavras (ESAL-UFLA), Lavras, MG, 37200-900, Brazil
| | | |
Collapse
|
2
|
Abdelnaby A, Abdel-Aleem N, Mansour A, Abdelkader A, Ibrahim AN, Sorour SM, Elgendy E, Bayoumi H, Abdelrahman SM, Ibrahim SF, Alsaati I, Abdeen A. The Combination of Tamarindus indica and Coenzyme Q10 can be a Potential Therapy Preference to Attenuate Cadmium-Induced Hepatorenal Injury. Front Pharmacol 2022; 13:954030. [PMID: 36003506 PMCID: PMC9393486 DOI: 10.3389/fphar.2022.954030] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cadmium (Cd) is a hazardous environmental pollutant that menaces human and animal health and induces serious adverse effects in various organs, particularly the liver and kidneys. Thus, the current study was designed to look into the possible mechanisms behind the ameliorative activities of Tamarindus indica (TM) and coenzyme Q10 (CoQ) combined therapy toward Cd-inflicted tissue injury. Male Wistar rats were categorized into seven groups: Control (received saline only); TM (50 mg/kg); CoQ (40 mg/kg); Cd (2 mg/kg); (Cd + TM); (Cd + CoQ); and (Cd + TM + CoQ). All the treatments were employed once daily via oral gavage for 28 consecutive days. The results revealed that Cd exposure considerably induced liver and kidney damage, evidenced by enhancement of liver and kidney function tests. In addition, Cd intoxication could provoke oxidative stress evidenced by markedly decreased glutathione (GSH) content and catalase (CAT) activity alongside a substantial increase in malondialdehyde (MDA) concentrations in the hepatic and renal tissues. Besides, disrupted protein and lipid metabolism were noticed. Unambiguously, TM or CoQ supplementation alleviated Cd-induced hepatorenal damage, which is most likely attributed to their antioxidant and anti-inflammatory contents. Interestingly, when TM and CoQ were given in combination, a better restoration of Cd-induced liver and kidney damage was noticed than was during their individual treatments.
Collapse
Affiliation(s)
- Amany Abdelnaby
- Department of Biotechnology, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Nabila Abdel-Aleem
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
| | - Ayman Mansour
- Department of Biotechnology, Animal Health Research Institute, Agricultural Research Center, Giza, Egypt
| | - Afaf Abdelkader
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha, Egypt
- Center of Excellence in Screening of Environmental Contaminants (CESEC), Benha University, Toukh, Egypt
- *Correspondence: Afaf Abdelkader, ; Ahmed Abdeen,
| | - Amany N. Ibrahim
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Safwa M. Sorour
- Department of Pharmacology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Enas Elgendy
- Histology and Cell Biology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Heba Bayoumi
- Histology and Cell Biology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Shaymaa M. Abdelrahman
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Benha University, Benha, Egypt
| | - Samah F. Ibrahim
- Department of Clinical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ilhaam Alsaati
- Department of Basic Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, Egypt
- Center of Excellence in Screening of Environmental Contaminants (CESEC), Benha University, Toukh, Egypt
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, Egypt
- *Correspondence: Afaf Abdelkader, ; Ahmed Abdeen,
| |
Collapse
|