1
|
Hara E, Ohshima K, Takimoto M, Bai Y, Hirata M, Zeng W, Uomoto S, Todoroki M, Kobayashi M, Kozono T, Kigata T, Shibutani M, Yoshida T. Flutamide Promotes Early Hepatocarcinogenesis Through Mitophagy in High-Fat Diet-Fed Non-Obese Steatotic Rats. Int J Mol Sci 2025; 26:2709. [PMID: 40141351 PMCID: PMC11943065 DOI: 10.3390/ijms26062709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 03/05/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Flutamide (FL), a non-steroidal drug used for its antiandrogenic, anticancer, and disrupting endocrine properties, induces mitochondrial toxicity and drug metabolism enzymes and promotes hepatocarcinogenesis. The inhibition of mitophagy, leading to the accumulation of damaged mitochondria, is implicated in the pathogenesis of nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the effects of FL in high-fat diet (HFD)-induced non-obese steatosis rats, categorized into four groups: basal diet (BD), BD + FL, HFD, and HFD + FL. The FL exacerbated HFD-induced steatosis and marginally increased preneoplastic lesions. To analyze hepatic preneoplastic lesions, we divided them into clusters based on the expression ratios of the mitophagy regulators LC3 and AMBRA1. The expression rates of LC3 and AMBRA1 in these precancerous lesions were classified into three clusters using k-means clustering. The HFD group exhibited an increased ratio of mitophagy inhibition clusters, as indicated by decreased LC3 and increased AMBRA1 levels in background hepatocytes and preneoplastic lesions. FL counteracted HFD-mediated mitophagy inhibition, as indicated by increased LC3 and decreased AMBRA1 levels in background hepatocytes. Our clustering analysis revealed that FL-induced mitophagy induction relied on Parkin expression. The present study underscores the significance of cluster analysis in understanding the role of mitophagy within small preneoplastic lesions and suggests that FL may potentially exacerbate NAFLD-associated hepatocarcinogenesis by affecting mitophagy.
Collapse
Affiliation(s)
- Emika Hara
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Kanami Ohshima
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Mio Takimoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Yidan Bai
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Mai Hirata
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Wen Zeng
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Suzuka Uomoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Mai Todoroki
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Takuma Kozono
- Smart-Core-Facility Promotion Organization, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan;
| | - Tetsuhito Kigata
- Laboratory of Veterinary Anatomy, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan;
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan (M.S.)
| |
Collapse
|
2
|
Ohshima K, Hara E, Takimoto M, Bai Y, Hirata M, Zeng W, Uomoto S, Todoroki M, Kobayashi M, Kozono T, Kigata T, Shibutani M, Yoshida T. Peroxisome Proliferator Activator α Agonist Clofibrate Induces Pexophagy in Coconut Oil-Based High-Fat Diet-Fed Rats. BIOLOGY 2024; 13:1027. [PMID: 39765694 PMCID: PMC11673738 DOI: 10.3390/biology13121027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/03/2025]
Abstract
Peroxisomes are crucial for fatty acid β-oxidation in steatosis, but the role of pexophagy-the selective autophagy of peroxisomes-remains unclear. This study investigated the effects of the peroxisome proliferator-activated receptor-α (PPARα) agonist clofibrate on pexophagy in a coconut oil-based high-fat diet (HFD)-induced hepatocarcinogenesis model. Rats were divided into four groups: control, clofibrate, HFD, and HFD with clofibrate. The HFD induced steatosis, along with a 2.4-fold increase in pexophagy receptor NBR1-positive granules in hepatocytes. Clofibrate significantly inhibited HFD-induced steatosis, increasing p62-, LAMP2-, and Pex5-positive granules by 7.5-, 7.2-, and 71.4-fold, respectively, while decreasing NBR1 expression. The effects were associated with peroxisome proliferation and pexophagy in ultrastructural observations and increased levels of Lc3, p62, Pex2, Pex14, Acox1, and Scd1 in gene expression analysis. The results suggested that clofibrate effectively reduced steatosis through combined peroxisome proliferation and pexophagy, though it had a marginal impact on hepatocarcinogenesis in coconut oil-based HFD-fed rats. These findings highlight the utility of PPARα agonists in studying mammalian pexophagy.
Collapse
Affiliation(s)
- Kanami Ohshima
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Emika Hara
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Mio Takimoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Yidan Bai
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Mai Hirata
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Wen Zeng
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Suzuka Uomoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Mai Todoroki
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
- Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan
| | - Takuma Kozono
- Smart-Core-Facility Promotion Organization, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan;
| | - Tetsuhito Kigata
- Laboratory of Veterinary Anatomy, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan;
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Tokyo 183-8509, Japan (M.S.)
| |
Collapse
|
3
|
Wang S, Nie J, Jiang H, Li A, Zhong N, Tong W, Yao G, Jiang A, Xie X, Zhong Y, Shu Z, Liu J, Yang F, Liu Z. VCP enhances autophagy-related osteosarcoma progression by recruiting USP2 to inhibit ubiquitination and degradation of FASN. Cell Death Dis 2024; 15:788. [PMID: 39489738 PMCID: PMC11532476 DOI: 10.1038/s41419-024-07168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/09/2024] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
Osteosarcoma (OS) is a highly aggressive malignant tumor with a high rate of disability and mortality rates, and dysregulated autophagy is a crucial factor in cancer. However, the molecular mechanisms that regulate autophagy in OS remain unclear. This study aimed to explore key molecules that affect autophagy in OS and their regulatory mechanisms. We found that fatty acid synthase (FASN) was significantly increased in activated autophagy models of OS and promoted OS proliferation in an autophagy-dependent manner, as detected by LC3 double-labeled fluorescence confocal microscopy, western blotting, transmission electron microscopy (TEM), and cell functional experiments. Furthermore, co-immunoprecipitation combined with mass spectrometry (Co-IP/MS), ubiquitination modification, molecular docking, and protein truncation methods were used to identify FASN-interacting proteins and analyze their effects on OS. Valosin-containing protein (VCP) enhanced the FASN stability by recruiting ubiquitin specific peptidase-2 (USP2) to remove the K48-linked ubiquitin chains from FASN; domain 2 of VCP and the amino acid sequence () of USP2 were critical for their interactions. Gain- and loss-of-function experiments showed that the inhibition of FASN or USP2 attenuated the stimulatory effect of VCP overexpression on autophagy and the malignant phenotypes of OS cells in vitro and in vivo. Notably, micro-CT indicated that VCP induced severe bone destruction in nude mice, which was abrogated by FASN or USP2 downregulation. In summary, VCP recruits USP2 to stabilize FASN by deubiquitylation, thereby activating autophagy and promoting OS progression. The identification of the VCP/USP2/FASN axis, which mediates autophagy regulation, provides important insights into the underlying mechanisms of OS and offers potential diagnostic and therapeutic strategies for patients with OS.
Collapse
Affiliation(s)
- Shijiang Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, 330006, People's Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jiangbo Nie
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, 330006, People's Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Haoxin Jiang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, 330006, People's Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Anan Li
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, 330006, People's Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Nanshan Zhong
- Basic Medical School of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Weilai Tong
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, 330006, People's Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Geliang Yao
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, 330006, People's Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Alan Jiang
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, 330006, People's Republic of China
| | - Xinsheng Xie
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, 330006, People's Republic of China
| | - Yanxin Zhong
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, 330006, People's Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Zhiguo Shu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, 330006, People's Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jiaming Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, 330006, People's Republic of China
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Feng Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, 330006, People's Republic of China.
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| | - Zhili Liu
- Department of Orthopedic Surgery, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Spine and Spinal Cord Diseases, Nanchang, 330006, People's Republic of China.
- Medical Innovation Center, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
4
|
Kumar AR, Nair B, Kamath AJ, Nath LR, Calina D, Sharifi-Rad J. Impact of gut microbiota on metabolic dysfunction-associated steatohepatitis and hepatocellular carcinoma: pathways, diagnostic opportunities and therapeutic advances. Eur J Med Res 2024; 29:485. [PMID: 39367507 PMCID: PMC11453073 DOI: 10.1186/s40001-024-02072-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/22/2024] [Indexed: 10/06/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) and progression to hepatocellular carcinoma (HCC) exhibits distinct molecular and immune characteristics. These traits are influenced by multiple factors, including the gut microbiome, which interacts with the liver through the "gut-liver axis". This bidirectional relationship between the gut and its microbiota and the liver plays a key role in driving various liver diseases, with microbial metabolites and immune responses being central to these processes. Our review consolidates the latest research on how gut microbiota contributes to MASH development and its progression to HCC, emphasizing new diagnostic and therapeutic possibilities. We performed a comprehensive literature review across PubMed/MedLine, Scopus, and Web of Science from January 2000 to August 2024, focusing on both preclinical and clinical studies that investigate the gut microbiota's roles in MASH and HCC. This includes research on pathogenesis, as well as diagnostic and therapeutic advancements related to the gut microbiota. This evidence emphasizes the critical role of the gut microbiome in the pathogenesis of MASH and HCC, highlighting the need for further clinical studies and trials. This is to refine diagnostic techniques and develop targeted therapies that exploit the microbiome's capabilities, aiming to enhance patient care in liver diseases.
Collapse
Affiliation(s)
- Ayana R Kumar
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Bhagyalakshmi Nair
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmacology, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Adithya Jayaprakash Kamath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
- Department of Pharmaceutics, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health. Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India
| | - Lekshmi R Nath
- Department of Pharmacognosy, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Science Campus, Ponekkara P. O., Kochi, Kerala, 682041, India.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, 092301, Ecuador.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
5
|
Taguchi D, Shirakami Y, Sakai H, Maeda T, Miwa T, Kubota M, Imai K, Ibuka T, Shimizu M. High-Fat Diet Delays Liver Fibrosis Recovery and Promotes Hepatocarcinogenesis in Rat Liver Cirrhosis Model. Nutrients 2024; 16:2506. [PMID: 39125385 PMCID: PMC11314319 DOI: 10.3390/nu16152506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
More effective treatments for hepatitis viral infections have led to a reduction in the incidence of liver cirrhosis. A high-fat diet can lead to chronic hepatitis and liver fibrosis, but the effects of lipid intake on liver disease status, including hepatitis C virus and alcohol, after elimination of the cause are unclear. To investigate the effects, we used a rat cirrhosis model and a high-fat diet in this study. Male Wistar rats were administered carbon tetrachloride for 5 weeks. At 12 weeks of age, one group was sacrificed. The remaining rats were divided into four groups according to whether or not they were administered carbon tetrachloride for 5 weeks, and whether they were fed a high-fat diet or control diet. At 12 weeks of age, liver fibrosis became apparent and then improved in the groups where carbon tetrachloride was discontinued, while it worsened in the groups where carbon tetrachloride was continued. Liver fibrosis was notable in both the carbon tetrachloride discontinuation and continuation groups due to the administration of a high-fat diet. In addition, liver precancerous lesions were observed in all groups, and tumor size and multiplicity were higher in the high-fat diet-fed groups. The expression of genes related to inflammation and lipogenesis were upregulated in rats fed a high-fat diet compared to their controls. The results suggest that a high-fat diet worsens liver fibrosis and promotes liver carcinogenesis, presumably through enhanced inflammation and lipogenesis, even after eliminating the underlying cause of liver cirrhosis.
Collapse
Affiliation(s)
| | - Yohei Shirakami
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Murillo Carrasco AG, Giovanini G, Ramos AF, Chammas R, Bustos SO. Insights from a Computational-Based Approach for Analyzing Autophagy Genes across Human Cancers. Genes (Basel) 2023; 14:1550. [PMID: 37628602 PMCID: PMC10454514 DOI: 10.3390/genes14081550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
In the last decade, there has been a boost in autophagy reports due to its role in cancer progression and its association with tumor resistance to treatment. Despite this, many questions remain to be elucidated and explored among the different tumors. Here, we used omics-based cancer datasets to identify autophagy genes as prognostic markers in cancer. We then combined these findings with independent studies to further characterize the clinical significance of these genes in cancer. Our observations highlight the importance of innovative approaches to analyze tumor heterogeneity, potentially affecting the expression of autophagy-related genes with either pro-tumoral or anti-tumoral functions. In silico analysis allowed for identifying three genes (TBC1D12, KERA, and TUBA3D) not previously described as associated with autophagy pathways in cancer. While autophagy-related genes were rarely mutated across human cancers, the expression profiles of these genes allowed the clustering of different cancers into three independent groups. We have also analyzed datasets highlighting the effects of drugs or regulatory RNAs on autophagy. Altogether, these data provide a comprehensive list of targets to further the understanding of autophagy mechanisms in cancer and investigate possible therapeutic targets.
Collapse
Affiliation(s)
- Alexis Germán Murillo Carrasco
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (S.O.B.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Guilherme Giovanini
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, Brazil; (G.G.); (A.F.R.)
| | - Alexandre Ferreira Ramos
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Av. Arlindo Béttio, 1000, São Paulo 03828-000, Brazil; (G.G.); (A.F.R.)
| | - Roger Chammas
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (S.O.B.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| | - Silvina Odete Bustos
- Center for Translational Research in Oncology (LIM24), Instituto do Cancer do Estado de Sao Paulo (ICESP), Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo (HCFMUSP), São Paulo 01246-000, Brazil; (A.G.M.C.); (S.O.B.)
- Comprehensive Center for Precision Oncology, Universidade de São Paulo, São Paulo 01246-000, Brazil
| |
Collapse
|
7
|
AbdRabou MA, Alrashdi BM, Alruwaili HK, Elmazoudy RH, Alwaili MA, Othman SI, Alghamdi FA, Fahmy GH. Exploration of Maternal and Fetal Toxicity Risks for Metronidazole-Related Teratogenicity and Hepatotoxicity through an Assessment in Albino Rats. TOXICS 2023; 11:303. [PMID: 37112529 PMCID: PMC10141390 DOI: 10.3390/toxics11040303] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Metronidazole is the primary antimicrobial drug for treating acute and chronic vaginal pathogens during pregnancy; however, there has been insufficient research on placental disorders, early pregnancy loss, and preterm birth. Here, the potential activity of metronidazole on pregnancy outcomes was investigated. 130 mg/kg body weight of metronidazole was orally given individually to pregnant rats on gestation days 0-7, 7-14, and 0-20. Pregnancy outcome evaluations were carried out on gestation day 20. It was demonstrated that metronidazole could induce maternal and fetal hepatotoxicity. There is a significant increase in the activities of maternal hepatic enzymes (ALT, AST, and ALP), total cholesterol, and triglycerides compared with the control. These biochemical findings were evidenced by maternal and fetal liver histopathological alterations. Furthermore, metronidazole caused a significant decrease in the number of implantation sites and fetal viability, whereas it caused an increase in fetal lethality and the number of fetal resorptions. In addition, a significant decrease in fetal weight, placental weight, and placental diameter was estimated. Macroscopical examination revealed placental discoloration and hypotrophy in the labyrinth zone and the degeneration of the basal zone. The fetal defects are related to exencephaly, visceral hernias, and tail defects. These findings suggest that the administration of metroniazole during gestation interferes with embryonic implantation and fetal organogenesis and enhances placental pathology. We can also conclude that metronidazole has potential maternal and fetal risks and is unsafe during pregnancy. Additionally, it should be strictly advised and prescribed, and further consideration should be given to the associated health risks.
Collapse
Affiliation(s)
- Mervat A. AbdRabou
- Biology Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Barakat M. Alrashdi
- Biology Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Hadeel K. Alruwaili
- Biology Department, College of Science, Jouf University, P.O. Box 2014, Sakaka 72388, Saudi Arabia
| | - Reda H. Elmazoudy
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Maha A. Alwaili
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Sarah I. Othman
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
| | - Fawzyah A. Alghamdi
- Biology Department, College of Science, University of Jeddah, Jeddah 23218, Saudi Arabia
| | - Gehan H. Fahmy
- Biology Department, College of Science, Taibah University, Al-Madinah Al-Munawwarah 30001, Saudi Arabia
| |
Collapse
|
8
|
Uomoto S, Takesue K, Shimizu S, Maeda N, Oshima K, Hara E, Kobayashi M, Takahashi Y, Shibutani M, Yoshida T. Phenobarbital, a hepatic metabolic enzyme inducer, inhibits preneoplastic hepatic lesions with expression of selective autophagy receptor p62 and ER-phagy receptor FAM134B in high-fat diet-fed rats through the inhibition of ER stress. Food Chem Toxicol 2023; 173:113607. [PMID: 36657701 DOI: 10.1016/j.fct.2023.113607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023]
Abstract
We investigated the role of endoplasmic reticulum (ER)-phagy in NAFLD-related hepatocarcinogenesis in high-fat diet (HFD)-fed and/or phenobarbital (PB)-treated rats by clustering the expression levels of the selective autophagy receptor p62 and the ER-phagy-specific receptor FAM134B in preneoplastic hepatic lesions. We obtained four clusters with variable expression levels of p62 and FAM134B in preneoplastic lesions, and a variable population of clusters in each group. PB administration increased the clusters with high expression levels of p62 while HFD feeding increased the clusters with high expression levels of both p62 and FAM134B. The areas of preneoplastic lesions of these clusters were significantly increased than those of other clusters with low expression levels of p62 and FAM134B. The combination of HFD feeding with PB counteracted the effects of each other, and the cluster composition was similar to that in the control group. The results were associated with decreased gene expression of ER stress, inflammatory cytokine, autophagy, and increased expression of antioxidant enzyme. The present study demonstrated that clustering analysis is useful for understanding the role of autophagy in each preneoplastic lesion, and that HFD feeding increased preneoplastic lesions through the inhibition of ER-phagy, which was cancelled with PB administration through the induction of ER-phagy.
Collapse
Affiliation(s)
- Suzuka Uomoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Keisuke Takesue
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Saori Shimizu
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Natsuno Maeda
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Kanami Oshima
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Emika Hara
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
9
|
Ichikawa R, Masuda S, Nakahara J, Kobayashi M, Yamashita R, Uomoto S, Kanami O, Hara E, Ito Y, Shibutani M, Yoshida T. Inhibition of autophagy with expression of NADPH oxidase subunit p22phox in preneoplastic lesions in a high-fat diet and streptozotocin-related hepatocarcinogenesis rat model. J Toxicol Sci 2022; 47:289-300. [PMID: 35786680 DOI: 10.2131/jts.47.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To study the effects of autophagy inducer carbamazepine (CBZ) in a high-fat diet (HFD)/streptozotocin (STZ)-related early hepatocarcinogenesis model, we determined autophagic flux by immunohistochemical analysis of autophagy marker expression in preneoplastic liver foci and compared that with the expression of the NADPH oxidase subunit. Male F344 rats were fed a basal diet or HFD and subjected to two-stage hepatocarcinogenesis; diabetes mellitus was induced via STZ administration. Several STZ-treated, HFD-fed rats were administered CBZ (a total of five doses every one or two days) at week 7 and 8. STZ-treated, HFD-fed rats decreased β cells in the islet of Langerhans and increased adipophilin-positive lipid droplets in the liver; moreover, they had a larger area of glutathione S-transferase placental form-immunopositive preneoplastic liver foci, which was associated with inhibition of autophagy and induction of the NADPH oxidase subunit, as demonstrated by increased immunohistochemical expression of an autophagosome receptor marker microtubule-associated protein light chain 3 (LC3)-binding protein p62, and of an NADPH oxidase subunit p22phox in the preneoplastic foci. An increased trend of an autophagy phagophore marker LC3 in preneoplastic foci was also detected. CBZ administration could induce autophagy and impair p22phox expression, as shown by altered expression of autophagy regulators (Atg5, Atg6, Lamp1, Lamp2, and Lc3), NADPH oxidase subunits (P22phox and P67phox), and antioxidant enzymes Gpx1 and Gpx2. These results suggest that inhibition of autophagy and induction of p22phox might contribute to HFD/STZ-related early hepatocarcinogenesis in rats; however, the effects of CBZ administration on the STZ/HFD-increased preneoplastic foci were marginal in this study.
Collapse
Affiliation(s)
- Ryo Ichikawa
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology
| | - Sosuke Masuda
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology
| | - Junta Nakahara
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology
| | - Risako Yamashita
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology
| | - Suzuka Uomoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology
| | - Ohshima Kanami
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology
| | - Erika Hara
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology
| | - Yuko Ito
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology.,Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology
| |
Collapse
|