1
|
Xiao LJ, Jiang Y, Chen Z, Peng L, Tang Y, Lei L. Geosmin Events Associated with Dolichospermum circinale Abundance Promoted by Nitrogen Supply in a Chinese Large Tropical Eutrophic Reservoir. Microorganisms 2024; 12:2610. [PMID: 39770810 PMCID: PMC11676210 DOI: 10.3390/microorganisms12122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
Taste and odor (T/O) compounds are a global threat in drinking water, mainly produced by cyanobacteria in freshwater environments. Temperature plays a crucial role in regulating geosmin dynamics in temperate and subtropical lakes, while its influence may be lower in tropical waters. To better understand the factors affecting geosmin occurrence in tropical waters, a dataset from a field investigation conducted in a large tropical reservoir was analyzed. The water temperature varied between 16 °C and 32 °C, with geosmin concentration ranging from below the detection limit (3 ng/L) to as high as 856 ng/L. Elevated geosmin levels exceeding > 10 ng/L were observed over the whole year except for in September, suggesting that the annual temperature was suitable for geosmin production. Among the diverse cyanobacteria, Dolichospermum circinale was identified as the main producer of geosmin in the reservoir, both by correlation analysis and cells' geosmin measurements. Geosmin concentration was also significantly related to the abundance of D. circinale. None of the environmental variables (temperature, pH, transparency and nutrients) were significantly directly correlated with geosmin concentration. But the high total nitrogen significantly explained the increase in D. circinale abundance associated with geosmin elevation. Our results suggest that nutrients, particularly nitrogen, directly affected the competitive advantage and abundance of key geosmin producers and thus modified geosmin levels in this tropical reservoir. Our study thus hints at the possible management of the geosmin problem through nutrient reduction in tropical reservoirs.
Collapse
Affiliation(s)
- Li-Juan Xiao
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; (L.-J.X.); (Y.J.); (Z.C.); (L.P.)
- Guangdong Engineering Research Center of Reservoir Cyanobacteria Bloom Control, Guangzhou 510632, China
| | - Yanru Jiang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; (L.-J.X.); (Y.J.); (Z.C.); (L.P.)
| | - Zihan Chen
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; (L.-J.X.); (Y.J.); (Z.C.); (L.P.)
| | - Liang Peng
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; (L.-J.X.); (Y.J.); (Z.C.); (L.P.)
- Guangdong Engineering Research Center of Reservoir Cyanobacteria Bloom Control, Guangzhou 510632, China
| | - Yali Tang
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; (L.-J.X.); (Y.J.); (Z.C.); (L.P.)
| | - Lamei Lei
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China; (L.-J.X.); (Y.J.); (Z.C.); (L.P.)
| |
Collapse
|
2
|
Wu D, Chen M, Shen A, Shi Y. Spatiotemporal dynamics of 2-methylisoborneol produced by filamentous cyanobacteria and associated driving factors in Lake Taihu, China. HARMFUL ALGAE 2024; 138:102703. [PMID: 39244238 DOI: 10.1016/j.hal.2024.102703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/25/2024] [Accepted: 07/30/2024] [Indexed: 09/09/2024]
Abstract
The proliferation of filamentous cyanobacteria in lakes can result in the generation of odor-causing compounds, predominantly 2-methylisoborneol (2-MIB), which pose odor-related challenges. In an effort to elucidate the spatiotemporal dynamics of 2-MIB and related influencing factors in East Lake Taihu, monthly investigations were undertaken from April 2022 to March 2023. In addition to the monthly survey, a whole-lake survey was conducted during the high-temperature period from July to September. The monthly survey revealed a distinct unimodal fluctuation in the concentration of 2-MIB in East Lake Taihu, with an average concentration at 297.0 ng/L during the high-temperature period. During the high-temperature period, the filamentous cyanobacterial communities detected in East Lake Taihu consisted primarily of species belonging to genera Leptolyngbya, Oscillatoria, Planktothricoides, and Pseudanabaena. However, no significant correlations were found between their densities and 2-MIB concentration. In addition, the mic gene was predominantly detected in genera Pseudanabaena and Planktothricoides, with the latter being the primary contributor to 2-MIB production. Furthermore, a succession of cyanobacteria capable of producing 2-MIB was detected, with water temperature and radiation intensity being identified as the primary driving factors. The temporal variation of 2-MIB concentration within East Lake Taihu during the whole year was primarily modulated by factors such as water temperature, water transparency, dissolved oxygen, and chlorophyll-a. During the high-temperature period, the 2-MIB concentration in the alga-dominated zone of East Lake Taihu was approximately 1.7 times greater than that in the macrophyte-dominated zone, with nutrient and transparency being identified as the main influencing factors. Consequently, our findings are of great significance for monitoring the sources and variation of 2-MIB in shallow lakes, providing a scientific foundation and theoretical guidance for odor management.
Collapse
Affiliation(s)
- Donghao Wu
- Taihu Basin Monitoring Center of Hydrology and Water Resources, Wuxi 214024, China; Key Laboratory of Taihu Basin Water Resources Research and Management of Ministry of Water Resources, Wuxi 214024, China
| | - Mingxin Chen
- Taihu Basin Monitoring Center of Hydrology and Water Resources, Wuxi 214024, China; Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Aichun Shen
- Taihu Basin Monitoring Center of Hydrology and Water Resources, Wuxi 214024, China; Key Laboratory of Taihu Basin Water Resources Research and Management of Ministry of Water Resources, Wuxi 214024, China
| | - Yadong Shi
- Taihu Basin Monitoring Center of Hydrology and Water Resources, Wuxi 214024, China; Key Laboratory of Taihu Basin Water Resources Research and Management of Ministry of Water Resources, Wuxi 214024, China.
| |
Collapse
|
3
|
Park R, Yu MN, Park JH, Kang T, Lee JE. Effect of Culture Temperature on 2-Methylisoborneol Production and Gene Expression in Two Strains of Pseudanabaena sp. Cells 2024; 13:1386. [PMID: 39195274 PMCID: PMC11352632 DOI: 10.3390/cells13161386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/09/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
The presence of the odorant 2-methylisoborneol (2-MIB) in drinking water sources is undesirable. Although 2-MIB production is known to be influenced by temperature, its regulation at the gene level and its relationship with Chlorophyll-a (Chl-a) at different temperatures remain unclear. This study investigates the impact of temperature on 2-MIB production and related gene expression in Pseudanabaena strains PD34 and PD35 isolated from Lake Paldang, South Korea. The strains were cultured at three temperatures (15, 25, and 30 °C) to examine cell growth, 2-MIB production, and mic gene expression levels. 2-MIB production per cell increased with higher temperatures, whereas mic gene expression levels were higher at lower temperatures, indicating a complex regulatory mechanism involving post-transcriptional and enzyme kinetics factors. Additionally, the relationship between Chl-a and 2-MIB involved in metabolic competition was analyzed, suggesting that high temperatures appear to favor 2-MIB synthesis more than Chl-a synthesis. The distinct difference in the total amount of the two products and the proportion of 2-MIB between the two strains partially explains the variations in 2-MIB production. These findings highlight the significant effect of temperature on 2-MIB biosynthesis in Pseudanabaena and provide a valuable background for gene data-based approaches to manage issues regarding 2-MIB in aquatic environments.
Collapse
Affiliation(s)
- Rumi Park
- Han River Environment Research Center, National Institute of Environmental Research, Yangpyeong 12585, Republic of Korea; (R.P.); (M.-N.Y.); (J.-H.P.); (T.K.)
| | - Mi-Na Yu
- Han River Environment Research Center, National Institute of Environmental Research, Yangpyeong 12585, Republic of Korea; (R.P.); (M.-N.Y.); (J.-H.P.); (T.K.)
| | - Ji-Hyun Park
- Han River Environment Research Center, National Institute of Environmental Research, Yangpyeong 12585, Republic of Korea; (R.P.); (M.-N.Y.); (J.-H.P.); (T.K.)
| | - Taegu Kang
- Han River Environment Research Center, National Institute of Environmental Research, Yangpyeong 12585, Republic of Korea; (R.P.); (M.-N.Y.); (J.-H.P.); (T.K.)
| | - Jung-Eun Lee
- Division of Water Supply and Sewerage Research, National Institute of Environment Research, Incheon 22689, Republic of Korea
| |
Collapse
|
4
|
Wang H, Li L, Cheng S, Chen L, Zhang H, Zhang X. Production and release of 2-MIB in Pseudanabaena: Effects of growth phases on cell characteristics and 2-MIB yield. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116198. [PMID: 38471340 DOI: 10.1016/j.ecoenv.2024.116198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
2-methylisoborneol (2-MIB), a secondary metabolite produced by cyanobacteria, often causes a musty odour in water, threatening the safety of drinking water supplies. This study investigated the effects of the growth phases on the production of 2-MIB by Pseudanabaena. The effects of cell characteristics on the production and release of 2-MIB were also explored. The total 2-MIB concentration increased during the exponential phase and decreased during the declining phase, which was consistent with the changes in cell density. However, the total 2-MIB yield (1.12-1.27 fg cell-1) of Pseudanabaena did not significantly differ throughout the growth cycle (p > 0.05). Meanwhile, the extracellular 2-MIB yield increased significantly from 0.31 fg cell-1 in the exponential phase to 0.76 fg cell-1 in the declining phase (p < 0.05), and the corresponding proportion of extracellular 2-MIB improved from 25.13% to 59.16% (p < 0.05). The surge in extracellular 2-MIB during the declining phase could be attributed to the breaking of the Pseudanabaena filament, as indicated by the decrease in Dmean during cell ageing. The findings of this study contribute to a more inclusive comprehension and management of musty odour issues resulting from cyanobacteria in the water supply.
Collapse
Affiliation(s)
- Hailing Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Shaozhe Cheng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Liang Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Haiyang Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xuezhi Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
5
|
Yan H, Jayasanka Senavirathna MDH. Recoverability of Microcystis aeruginosa and Pseudanabaena foetida Exposed to a Year-Long Dark Treatment. Microorganisms 2023; 11:2760. [PMID: 38004771 PMCID: PMC10672943 DOI: 10.3390/microorganisms11112760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cyanobacteria are a significant primary producer and pioneer species that play a vital role in ecological reconstruction, especially in aquatic environments. Cyanobacteria have excellent recovery capacity from significant stress exposure and are thus suggested as bioreserves, even for space colonization programs. Few studies have been conducted on the recovery capacity after experiencing stress. Long-duration darkness or insufficient light is stressful for photosynthetic species, including cyanobacteria, and can cause chlorosis. Cyanobacterial recovery after extensive exposure to darkness has not yet been studied. In this experiment, Microcystis aeruginosa and Pseudanabaena foetida were subjected to a year-long darkness treatment, and the change in recovery capacity was measured in monthly samples. Cyanobacterial growth, chlorophyll-a concentration, oxidative stress, and photosynthetic capacity were evaluated. It was found that the rapid recovery capacity of the two species remained even after one year of darkness treatment. However, the H2O2 content of recovered samples of both M. aeruginosa and P. foetida experienced significant changes at six-seven months, although the photosynthetic capacity of both cyanobacteria species was maintained within the healthy range. The chlorophyll-a and carotenoid content of the recovered samples also changed with increasing darkness. The results showed that long-term dark treatment had time-dependent effects but different effects on M. aeruginosa and P. foetida. However, both cyanobacteria species can recover rapidly after one year of dark treatment.
Collapse
|
6
|
Lee JE, Park R, Yu M, Byeon M, Kang T. qPCR-Based Monitoring of 2-Methylisoborneol/Geosmin-Producing Cyanobacteria in Drinking Water Reservoirs in South Korea. Microorganisms 2023; 11:2332. [PMID: 37764175 PMCID: PMC10538080 DOI: 10.3390/microorganisms11092332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Cyanobacteria can exist in water resources and produce odorants. 2-Methylisoborneol (2-MIB) and geosmin are the main odorant compounds affecting the drinking water quality in reservoirs. In this study, encoding genes 2-MIB (mic, monoterpene cyclase) and geosmin (geo, putative geosmin synthase) were investigated using newly developed primers for quantitative PCR (qPCR). Gene copy numbers were compared to 2-MIB/geosmin concentrations and cyanobacterial cell abundance. Samples were collected between July and October 2020, from four drinking water sites in South Korea. The results showed similar trends in three parameters, although the changes in the 2-MIB/geosmin concentrations followed the changes in the mic/geo copy numbers more closely than the cyanobacterial cell abundances. The number of odorant gene copies decreased from upstream to downstream. Regression analysis revealed a strong positive linear correlation between gene copy number and odorant concentration for mic (R2 = 0.8478) and geo (R2 = 0.601). In the analysis of several environmental parameters, only water temperature was positively correlated with both mic and geo. Our results demonstrated the feasibility of monitoring 2-MIB/geosmin occurrence using qPCR of their respective synthase genes. Odorant-producing, gene-based qPCR monitoring studies may contribute to improving drinking water quality management.
Collapse
Affiliation(s)
- Jung Eun Lee
- Han River Environment Research Center, National Institute of Environmental Research, 819 Yangsoo-ri, Yangpyeong-goon, Incheon 12585, Gyeonggi-do, Republic of Korea
| | - Rumi Park
- Han River Environment Research Center, National Institute of Environmental Research, 819 Yangsoo-ri, Yangpyeong-goon, Incheon 12585, Gyeonggi-do, Republic of Korea
| | - Mina Yu
- Han River Environment Research Center, National Institute of Environmental Research, 819 Yangsoo-ri, Yangpyeong-goon, Incheon 12585, Gyeonggi-do, Republic of Korea
| | - Myeongseop Byeon
- Han River Environment Research Center, National Institute of Environmental Research, 819 Yangsoo-ri, Yangpyeong-goon, Incheon 12585, Gyeonggi-do, Republic of Korea
| | - Taegu Kang
- Han River Environment Research Center, National Institute of Environmental Research, 819 Yangsoo-ri, Yangpyeong-goon, Incheon 12585, Gyeonggi-do, Republic of Korea
| |
Collapse
|
7
|
Garbeva P, Avalos M, Ulanova D, van Wezel GP, Dickschat JS. Volatile sensation: The chemical ecology of the earthy odorant geosmin. Environ Microbiol 2023; 25:1565-1574. [PMID: 36999338 DOI: 10.1111/1462-2920.16381] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/21/2023] [Indexed: 04/01/2023]
Abstract
Geosmin may be the most familiar volatile compound, as it lends the earthy smell to soil. The compound is a member of the largest family of natural products, the terpenoids. The broad distribution of geosmin among bacteria in both terrestrial and aquatic environments suggests that this compound has an important ecological function, for example, as a signal (attractant or repellent) or as a protective specialized metabolite against biotic and abiotic stresses. While geosmin is part of our everyday life, scientists still do not understand the exact biological function of this omnipresent natural product. This minireview summarizes the current general observations regarding geosmin in prokaryotes and introduces new insights into its biosynthesis and regulation, as well as its biological roles in terrestrial and aquatic environments.
Collapse
Affiliation(s)
- Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Mariana Avalos
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Dana Ulanova
- Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Gilles P van Wezel
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Jeroen S Dickschat
- University of Bonn, Kekulé-Institute of Organic Chemistry and Biochemistry, Gerhard-Domagk-Straße 1, 53121, Bonn, Germany
| |
Collapse
|
8
|
Hooper AS, Kille P, Watson SE, Christofides SR, Perkins RG. The importance of nutrient ratios in determining elevations in geosmin synthase (geoA) and 2-MIB cyclase (mic) resulting in taste and odour events. WATER RESEARCH 2023; 232:119693. [PMID: 36764104 DOI: 10.1016/j.watres.2023.119693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Geosmin synthase (geoA) and 2-MIB cyclase (mic) are key biosynthetic genes responsible for the production of taste and odour (T&O) compounds, geosmin and 2-MIB. These T&O compounds are becoming an increasing global problem for drinking water supplies. It is thought that geosmin and 2-MIB may be linked to, or exacerbated by, a variety of different environmental and nutrient triggers. However, to the best of our knowledge, no studies to date have evaluated the combined effects of seasonality, temperature, and nutrient concentrations on geoA and mic copy numbers in conjunction with T&O concentrations. In this study, environmental triggers behind geosmin and 2-MIB production were investigated in nine reservoirs across Wales, U.K. between July 2019 - August 2020. The abundance of geoA and mic were quantified through quantitative Polymerase Chain Reaction (qPCR). Temporal changes in geoA and geosmin concentrations revealed geoA to be an indicator of monthly geosmin concentrations, although only when geosmin concentrations exceeded 100 ng L-1. Model analysis of a reservoir with elevated geosmin concentrations revealed geoA to be significantly associated with mean temperature (p < 0.001) and the nutrients dissolved reactive silicate (p < 0.001), dissolved iron (p < 0.001), total inorganic nitrogen to phosphorous ratio (TIN:TP) (p < 0.001) and ammonium to nitrate ratio (NH4+:NO3-) (p < 0.001). Sulphate also demonstrated a significant positive linear relationship with geoA (p < 0.001). For mic analysis, NH4+:NO3- was significantly associated with mic (p < 0.05) and an association with dissolved reactive silicate was also observed (p = 0.084). Within this study we also report extreme variance in gene copy numbers between the study seasons. No consistent relationship could be determined for mic copy numbers mL-1 and 2-MIB (ng L-1). The findings from this study indicate that TIN:TP and NH4+:NO3- serve as good predictors for elevated geoA and mic, along with negative linear relationships observed for mean temperature and dissolved reactive silicate. Overall, our findings demonstrate the importance of nutrient concentrations, nutrient ratios and temperature for evidence based predictive capacity of taste and odour events in drinking water reservoirs.
Collapse
Affiliation(s)
- A S Hooper
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK; School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - P Kille
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK
| | - S E Watson
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK; School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, UK
| | - S R Christofides
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK
| | - R G Perkins
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff, Wales, CF10 3AX, UK; School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff, Wales, CF10 3AT, UK.
| |
Collapse
|
9
|
Senavirathna MDHJ, Jayasekara MADD. Temporal variation of 2-MIB and geosmin production by Pseudanabaena galeata and Phormidium ambiguum exposed to high-intensity light. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10834. [PMID: 36635233 DOI: 10.1002/wer.10834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/14/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
This study demonstrated the temporal variation of 2-methylisoborneol (2-MIB) and geosmin (GSM) production of two filamentous cyanobacteria species Pseudanabaena galeata (NIES-512; planktonic) and Phormidium ambiguum (NIES-2119; benthic) exposed to high light intensity (950-1000 μmol m-2  s-1 photosynthetically active radiation). The production of 2-MIB and GSM was quantified together with oxidative stress, chlorophyll content, and cellular protein content. The relative chlorophyll bleaching and cell degradations were compared through microscopic images. The 2-MIB production of P. galeata increased by over 42 ± 17% on the second day of exposure and remained leveled through the exposure period. P. ambiguum showed a continuous increase of 2-MIB until the 10th day, recording a 95 ± 4% increment. The GSM production was elevated until the fourth day of exposure by 46 ± 10% for P. galeata and by 74 ± 21% on the second day for P. ambiguum and reduced with prolonged exposure for both species. The chlorophyll content of P. galeata was reduced by 62 ± 7% on the second day, and that of P. ambiguum was reduced by 52 ± 9% on the fourth day and remained low. Protein and H2 O2 contents of both species were changed inconsistently. Exposure to high-intensity light can photobleach and deteriorate cells of both species, but elevations in odorous compounds can be expected.
Collapse
|