1
|
Yu J, Li W, Peng L, Yan J, Ding D, Zhang M, Que X, Zhao L. Efficient adsorption of Sb(III/V) by zirconium-functionalized cellulose microspheres and their application in actual underground water of mine cavern. Int J Biol Macromol 2025; 302:140552. [PMID: 39894119 DOI: 10.1016/j.ijbiomac.2025.140552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
At present, with the mining of antimony, highly toxic antimony has seriously threatened the safety of water sources and jeopardized human health. It remains a challenge to create adsorbents that are easy to separate, efficient and have high adsorption capacity. In this study, the zirconium-functionalized MCC microspheres (MCC-g-GMA-IDA-ZrOCl2) have been successfully synthesized using radiation grafting technique and applied for Sb(III/V) capture. Batch systematic adsorption experiments indicate that the experimental data for Sb(III/V) conform to the pseudo-second-order kinetic model with Langmuir maximum adsorption capacities of 56.25 mg/g (Sb(III)) and 240.96 mg/g (Sb(V)), respectively. Combining XPS and FTIR characterization with experimental data, it is reasonable to assume that MCC-g-GMA-IDA-ZrOCl2 removes antimony from aqueous solutions by ligand exchange, electrostatic attraction and surface complexation mechanisms. Column experiments demonstrate that MCC-g-GMA-IDA-ZrOCl2 selectively traps Sb(III/V) in underground water of mine cavern. Through the above adsorption performance tests, MCC-g-GMA-IDA-ZrOCl2 is expected to treat Sb(III/V) in antimony contaminated groundwater on a large scale in industrial water.
Collapse
Affiliation(s)
- Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd, Yangling 712000, China
| | - Wenkang Li
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lifang Peng
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Juntao Yan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430040, China
| | - Deng Ding
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430040, China
| | - Manman Zhang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430040, China.
| | - Xueyan Que
- Yangling Hesheng Irradiation Technologies Co., Ltd, Yangling 712000, China.
| | - Long Zhao
- State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
2
|
Gahrouei AE, Vakili S, Zandifar A, Pourebrahimi S. From wastewater to clean water: Recent advances on the removal of metronidazole, ciprofloxacin, and sulfamethoxazole antibiotics from water through adsorption and advanced oxidation processes (AOPs). ENVIRONMENTAL RESEARCH 2024; 252:119029. [PMID: 38685299 DOI: 10.1016/j.envres.2024.119029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Antibiotics released into water sources pose significant risks to both human health and the environment. This comprehensive review meticulously examines the ecotoxicological impacts of three prevalent antibiotics-ciprofloxacin, metronidazole, and sulfamethoxazole-on the ecosystems. Within this framework, our primary focus revolves around the key remediation technologies: adsorption and advanced oxidation processes (AOPs). In this context, an array of adsorbents is explored, spanning diverse classes such as biomass-derived biosorbents, graphene-based adsorbents, MXene-based adsorbents, silica gels, carbon nanotubes, carbon-based adsorbents, metal-organic frameworks (MOFs), carbon nanofibers, biochar, metal oxides, and nanocomposites. On the flip side, the review meticulously examines the main AOPs widely employed in water treatment. This includes a thorough analysis of ozonation (O3), the photo-Fenton process, UV/hydrogen peroxide (UV/H2O2), TiO2 photocatalysis, ozone/UV (O3/UV), radiation-induced AOPs, and sonolysis. Furthermore, the review provides in-depth insights into equilibrium isotherm and kinetic models as well as prospects and challenges inherent in these cutting-edge processes. By doing so, this review aims to empower readers with a profound understanding, enabling them to determine research gaps and pioneer innovative treatment methodologies for water contaminated with antibiotics.
Collapse
Affiliation(s)
- Amirreza Erfani Gahrouei
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Sajjad Vakili
- Chemical Engineering Department, Amirkabir University of Technology (AUT), Tehran, Iran.
| | - Ali Zandifar
- Chemical Engineering Department, School of Chemical and Petroleum Engineering, Shiraz University, Shiraz, Iran.
| | - Sina Pourebrahimi
- Department of Chemical and Materials Engineering, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada.
| |
Collapse
|
3
|
Qin Y, Tang X, Zhong X, Zeng Y, Zhang W, Xin L, Zhang L. Superior capacity and easy separation of zirconium functionalized chitosan melamine foam for antimony(III/V) removal. Int J Biol Macromol 2024; 257:128615. [PMID: 38070798 DOI: 10.1016/j.ijbiomac.2023.128615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/27/2023] [Accepted: 11/30/2023] [Indexed: 01/26/2024]
Abstract
Nowadays, highly toxic antimony has severely posed threat to water sources and jeopardized human health. Fabricating adsorbents with the capability of easy separation, high efficiency and large adsorption capacity remains a major challenge. In this paper, zirconium functionalized chitosan melamine foam (ZCMF) was fabricated with zirconium and chitosan crosslinked onto melamine foam, then utilized for the removal of antimony(III/V) in water. The characterization of SEM and EDS collectively showed that ZCMF has a porous structure which could boost the mass transfer rate and zirconium ions on the surface could provide plentiful active adsorption sites. Systematic adsorption experiments demonstrated that the experimental data of Sb(III) and Sb(V) were consistent with the pseudo-second-order and Elovich kinetic models, respectively, and the Langmuir maximum adsorption capacities were separately 255.35 mg g-1 (Sb(III)) and 414.41 mg g-1 (Sb(V)), which displayed prominent performance among adsorbents derived from biomass. Combining the XPS and FTIR characterization with experimental data, it is rational to speculate that ZCMF could remove Sb from aqueous solution through ligand exchange, electrostatic attraction, and surface complexation mechanisms. ZCMF exhibited excellent performance, including large adsorption capacity, easy separation, facile preparation and eco-friendliness. It could be a promising new adsorbent for the treatment of antimony-containing wastewater.
Collapse
Affiliation(s)
- Yan Qin
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xiangtao Tang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xingyu Zhong
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yang Zeng
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Wenqing Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Liu Xin
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Lingfan Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
4
|
Liu Z, Bahadoran A, Alizadeh A, Emami N, Al-Musaw TJ, Alawadi AHR, Aljeboree AM, Shamsborhan M, Najafipour I, Mousavi SE, Mosallanezhad M, Toghraie D. Sonocrystallization of a novel ZIF/zeolite composite adsorbent with high chemical stability for removal of the pharmaceutical pollutant azithromycin from contaminated water. ULTRASONICS SONOCHEMISTRY 2023; 97:106463. [PMID: 37290151 DOI: 10.1016/j.ultsonch.2023.106463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/20/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Water pollution management, reduction, and elimination are critical challenges of the current era that threaten millions of lives. By spreading the coronavirus in December 2019, the use of antibiotics, such as azithromycin increased. This drug was not metabolized, and entered the surface waters. ZIF-8/Zeolit composite was made by the sonochemical method. Furthermore, the effect of pH, the regeneration of adsorbents, kinetics, isotherms, and thermodynamics were attended. The adsorption capacity of zeolite, ZIF-8, and the composite ZIF-8/Zeolite were 22.37, 235.3, and 131 mg/g, respectively. The adsorbent reaches the equilibrium in 60 min, and at pH = 8. The adsorption process was spontaneous, endothermic associated with increased entropy. The results of the experiment were analyzed using Langmuir isotherms and pseudo-second order kinetic models with a R2 of 0.99, and successfully removing the composite by 85% in 10 cycles. It indicated that the maximum amount of drug could be removed with a small amount of composite.
Collapse
Affiliation(s)
- Zhiming Liu
- RENMIN Hospital of Wuhan University, Department of Stomatology, Wuhan, Hubei 430060, China.
| | - Ashkan Bahadoran
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - As'ad Alizadeh
- Department of Civil Engineering, College of Engineering, Cihan University-Erbil, Erbil, Iraq
| | - Nafiseh Emami
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Tariq J Al-Musaw
- Building and Construction Techniques Engineering Department, Al-Mustaqbal University College, 51001 Hillah, Babylon, Iraq
| | | | - Aseel M Aljeboree
- Department of Chemistry, College of Science for Women, University of Babylon, Hilla, Iraq
| | - Mahmoud Shamsborhan
- Department of Mechanical Engineering, College of Engineering, University of Zakho, Zakho, Iraq
| | - Iman Najafipour
- Department of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Seyed Erfan Mousavi
- Department of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Milad Mosallanezhad
- Department of Chemical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran
| | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr Khomeinishahr, Iran.
| |
Collapse
|
5
|
Zheng J, Peng X, Zhu T, Huang S, Chen C, Chen G, Liu S, Ouyang G. Detection of bile acids in small volume human bile samples via an amino metal-organic framework composite based solid-phase microextraction probe. J Chromatogr A 2022; 1685:463634. [DOI: 10.1016/j.chroma.2022.463634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022]
|
6
|
Metal-organic frameworks having hydroxy group: Nanoarchitectonics, preparation, and applications in adsorption, catalysis, and sensing. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
7
|
Zhang W, Huang T, Ren Y, Yang S, Zhao X, Yuan M, Wang J, Tu Q. A multifunctional chitosan composite aerogel for PPCPs adsorption. Carbohydr Polym 2022; 298:120102. [DOI: 10.1016/j.carbpol.2022.120102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 11/16/2022]
|
8
|
Ayub A, Srithilat K, Fatima I, Panduro-Tenazoa NM, Ahmed I, Akhtar MU, Shabbir W, Ahmad K, Muhammad A. Arsenic in drinking water: overview of removal strategies and role of chitosan biosorbent for its remediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64312-64344. [PMID: 35849228 DOI: 10.1007/s11356-022-21988-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Accessibility to clean drinking water often remains a crucial task at times. Among other water pollutants, arsenic is considered a more lethal contaminant and has become a serious threat to human life globally. This review discussed the sources, chemistry, distribution, and toxicity of arsenic and various conventional technologies that are in option for its removal from the water system. Nowadays, biosorbents are considered the best option for arsenic-contaminated water treatment. We have mainly focused on the need and potential of biosorbents especially the role of chitosan-based composites for arsenic removal. The chitosan-based sorbents are economically more efficient in terms of their, low toxicity, cost-effectiveness, biodegradability, eco-friendly nature, and reusability. The role of various modification techniques, such as physical and chemical, has also been evaluated to improve the physicochemical properties of biosorbent. The importance of adsorption kinetic and isotherm models and the role of solution pH and pHPZC for arsenic uptake from the polluted water have also been investigated. Some other potential applications of chitosan-based biosorbents have also been discussed along with its sustainability aspect. Finally, some suggestions have been highlighted for further improvements in this field.
Collapse
Affiliation(s)
- Asif Ayub
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Khaysy Srithilat
- Faculty of Economics and Business Management, National University of Laos, Vientiane, Laos
| | - Irum Fatima
- Department of Chemistry, University of Wah, Quaid Avenue, Wah Cantt, Rawalpindi, 47040, Pakistan
| | - Nadia Masaya Panduro-Tenazoa
- Department of Aquaculture Agroforestry Engineering, National Intercultural University of the Amazon, Pucallpa, Peru
| | - Iqbal Ahmed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Usman Akhtar
- National Institute of Food Science and Technology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Waqas Shabbir
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Khalil Ahmad
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Ali Muhammad
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| |
Collapse
|
9
|
Kalhorizadeh T, Dahrazma B, Zarghami R, Mirzababaei S, Kirillov AM, Abazari R. Quick removal of metronidazole from aqueous solutions using metal–organic frameworks. NEW J CHEM 2022. [DOI: 10.1039/d1nj06107k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Two MOFs were assembled, characterized and investigated in detail as efficient adsorbents for removal of the metronidazole antibiotic. Adsorption isotherms and kinetic features were also studied.
Collapse
Affiliation(s)
- Tina Kalhorizadeh
- Department of Civil and Environment Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Behnaz Dahrazma
- Department of Civil and Environment Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Reza Zarghami
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| | - Soheyl Mirzababaei
- Pharmaceutical Engineering Research Laboratory, Pharmaceutical Process Centers of Excellence, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| | - Alexander M. Kirillov
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Reza Abazari
- Department of Chemistry, Faculty of Science, University of Maragheh, P.O. Box 55181-83111, Maragheh, Iran
| |
Collapse
|