1
|
Murugan U, Gusain D, Balasubramani B, Srivastava S, Ganesh S, Ambattu Raghavannambiar S, Ramaraj K. A comprehensive review of environment-friendly biomimetic bionic superhydrophobic surfaces. BIOFOULING 2024; 40:679-701. [PMID: 39422280 DOI: 10.1080/08927014.2024.2414922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Marine fouling is a global problem that harms the ocean's ecosystem and the marine industrial sector. Traditional antifouling methods use harmful agents that damage the environment. As a result, recent research has focused on developing environmentally friendly, long-lasting, and sustainable antifouling solutions. Scientists have turned to nature for inspiration, particularly the water-repellent properties found in the microstructures of plants, insects and animals like the lotus leaf, butterfly, and shark. This review summarizes the current trends in developing superhydrophobic materials and fabrication techniques for bionic antifouling strategies. These strategies mimic the surface microstructures of various biological species, including the lotus leaf, coral tentacles, and the skins of sharks, whales, and dolphins. The review also discusses the technological applications of these biomimetic materials and the challenges associated with implementing them in the marine sector. Overall, the goal is to harness the superhydrophobicity of natural surfaces to create effective antifouling solutions.
Collapse
Affiliation(s)
- Udhayakumar Murugan
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Dakshesh Gusain
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Baskar Balasubramani
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Sagar Srivastava
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | - Sai Ganesh
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| | | | - Kannan Ramaraj
- Department of Aerospace Engineering, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Coimbatore, India
| |
Collapse
|
2
|
Dong W, Ni C, Li X, Yu L, Yan X. Preparation and antifouling performance of tin-free self-polishing antifouling coatings based on side-chain suspended indole derivative structural resins. MARINE POLLUTION BULLETIN 2024; 208:116931. [PMID: 39278177 DOI: 10.1016/j.marpolbul.2024.116931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/07/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
Tin-free self-polishing antifouling coatings have the highest market share since organotin self-polishing antifouling coatings have been banned. However, its high dependence on cuprous oxide was found to have caused potential harm to the environment, making it necessary to improve the functionality of the resin. In this paper, a zinc acrylate resin with side chain hanging indole derivative structure was prepared by using N-(1H-5-bromoindole-3-methylene) (BIAM) with good biological activity as functional monomer. The functional resin with good antifouling performance was selected by antibacterial and algae inhibition experiments. The results showed that when the BIAM content was 9 %, the inhibition rates of the resin on E. coli and Prymnesium parvum reached 98 % and 90 %, respectively. Tin-free self-polishing antifouling coatings were prepared using the above resins as film-forming materials. The anti-protein adsorption performance and antifouling performance of the coating were tested by anti-protein adsorption experiment and real sea hanging plate experiment. The results showed that the coating containing indole derivative structure had good anti-protein adsorption performance and antifouling performance, and the higher the BIAM content, the better the anti-protein adsorption performance and marine antifouling performance.
Collapse
Affiliation(s)
- Wenjian Dong
- Physical Oceanography Laboratory/IAOS and Frontiers Science Center for Deep Ocean Multispheres and Earth System/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Chunhua Ni
- Physical Oceanography Laboratory/IAOS and Frontiers Science Center for Deep Ocean Multispheres and Earth System/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Xia Li
- Physical Oceanography Laboratory/IAOS and Frontiers Science Center for Deep Ocean Multispheres and Earth System/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China.
| | - Liangmin Yu
- Physical Oceanography Laboratory/IAOS and Frontiers Science Center for Deep Ocean Multispheres and Earth System/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| | - Xuefeng Yan
- Physical Oceanography Laboratory/IAOS and Frontiers Science Center for Deep Ocean Multispheres and Earth System/Sanya Oceanographic Institution, Ocean University of China, Qingdao/Sanya, China
| |
Collapse
|
3
|
Pereira D, Almeida JR, Cidade H, Correia-da-Silva M. Proof of Concept of Natural and Synthetic Antifouling Agents in Coatings. Mar Drugs 2024; 22:291. [PMID: 39057400 PMCID: PMC11278152 DOI: 10.3390/md22070291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
Marine biofouling, caused by the deposition and accumulation of marine organisms on submerged surfaces, represents a huge concern for the maritime industries and also contributes to environmental pollution and health concerns. The most effective way to prevent this phenomenon is the use of biocide-based coatings which have proven to cause serious damage to marine ecosystems. Several research groups have focused on the search for new environmentally friendly antifoulants, including marine and terrestrial natural products and synthetic analogues. Some of these compounds have been incorporated into marine coatings and display interesting antifouling activities caused by the interference with the biofilm-forming species as well as by the inhibition of the settlement of macroorganisms. This review highlights the proof-of-concept studies of emerging natural or synthetic antifouling compounds in coatings, from lab-made to commercial ones, performed between 2019 and 2023 and their results in the field or in in vivo laboratorial tests.
Collapse
Affiliation(s)
- Daniela Pereira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
| | - Joana R. Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
- UNIPRO—Oral Pathology and Rehabilitation Research Unit, University Institute of Health Sciences (CESPU), 4585-116 Gandra, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal;
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal;
| |
Collapse
|
4
|
Miranda RA, Lima DGV, de Souza LL, Souza da Silva B, Bertasso IM, Meyer LG, Rossetti CL, Junior RR, Miranda-Alves L, de Moura EG, Lisboa PC. Maternal exposure to tributyltin alters the breast milk, hormonal profile, and thyroid morphology of dams and induces sex-specific changes in neonate rat offspring. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123963. [PMID: 38621455 DOI: 10.1016/j.envpol.2024.123963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/22/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
Tributyltin (TBT) is the chemical substance commonly used worldwide to prevent biofouling of vessels. Due to its ability to bioaccumulate and biomagnify, even after being banned, significant concentrations of TBT can be detected in sediment, affecting marine and human life. Although studies have shown that direct exposure to TBT alters physiological parameters in mammals, the relationship between exposure to TBT during pregnancy and lactation, considered critical windows for metabolic programming, has not been fully elucidated. Our hypothesis is that offspring whose mothers were exposed to TBT during critical stages of development may exhibit dysfunctions in endocrine-metabolic parameters. We used pregnant Wistar rats that were divided into groups and received the following treatments from gestational day 7 until the end of lactation by intragastric gavage: vehicle (ethanol 0.01%; Control), low TBT dose (100 ng/kg of body weight (bw)/day; TBT100ng) and high TBT dose (1000 ng/kg bw/day; TBT1000ng). Dams and offspring at birth and weaning (21 days old) were studied. Maternal exposure to TBT promoted dose-dependent changes in dams. The findings for adiposity, milk composition and lipid profile were more pronounced in TBT100 ng dam; however, thyroid morphology was altered in TBT1000 ng dam. Female offspring were differentially affected by the dose of exposure. At birth, females in the TBT100ng group had low body weight, lower naso-anal length (NAL), and higher plasma T4, and at weaning, females in the TBT100ng group had lower insulin and leptin levels. Females in the TBT1000ng group had lower NAL at birth and lower leptinemia and weight of white adipose tissue at weaning. Male offspring from TBT groups showed high T3 at birth, without biometric alterations at birth or weaning. Despite these findings, both sexes exhibited dose-dependent morphological changes in the thyroid gland. Thus, maternal exposure to TBT constitutes an important route of contamination for both dams and offspring.
Collapse
Affiliation(s)
- Rosiane Aparecida Miranda
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Daniel Galinis Vieira Lima
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Luana Lopes de Souza
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Beatriz Souza da Silva
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Iala Milene Bertasso
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Lilian Guedes Meyer
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Camila Lüdke Rossetti
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Reinaldo Röpke Junior
- Laboratory of Experimental Endocrinology, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, RJ, Brazil; Post graduate Program in Endocrinology, Faculty of Medicine, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, RJ, Brazil; Post graduate Program in Endocrinology, Faculty of Medicine, Universidade Federal do Rio de Janeiro, RJ, Brazil; Post graduate Program of Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, RJ, Brazil; Post graduate Program of Morphological Sciences, Institute of Biomedical Sciences, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Egberto Gaspar de Moura
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil
| | - Patricia Cristina Lisboa
- Laboratory of Endocrine Physiology, Institute of Biology Roberto Alcantara Gomes, Universidade do Estado do Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
5
|
Pereira D, Pinto M, Almeida JR, Correia-da-Silva M, Cidade H. The Role of Natural and Synthetic Flavonoids in the Prevention of Marine Biofouling. Mar Drugs 2024; 22:77. [PMID: 38393048 PMCID: PMC10889971 DOI: 10.3390/md22020077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Marine biofouling is a major concern for the maritime industry, environment, and human health. Biocides which are currently used in marine coatings to prevent this phenomenon are toxic to the marine environment, and therefore a search for antifoulants with environmentally safe properties is needed. A large number of scientific papers have been published showing natural and synthetic compounds with potential to prevent the attachment of macro- and microfouling marine organisms on submerged surfaces. Flavonoids are a class of compounds which are highly present in nature, including in marine organisms, and have been found in a wide range of biological activities. Some natural and synthetic flavonoids have been evaluated over the last few years for their potential to prevent the settlement and/or the growth of marine organisms on submerged structures, thereby preventing marine biofouling. This review compiles, for the first-time, natural flavonoids as well as their synthetic analogues with attributed antifouling activity against macrofouling and microfouling marine organisms.
Collapse
Affiliation(s)
- Daniela Pereira
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Joana R. Almeida
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Marta Correia-da-Silva
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
6
|
Zhao W, Wu Z, Liu Y, Dai P, Hai G, Liu F, Shang Y, Cao Z, Yang W. Research Progress of Natural Products and Their Derivatives in Marine Antifouling. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6190. [PMID: 37763467 PMCID: PMC10533101 DOI: 10.3390/ma16186190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
With the increasing awareness of environmental protection, it is necessary to develop natural product extracts as antifouling (AF) agents for alternatives to toxic biocides or metal-based AF paints to control biofouling. This paper briefly summarizes the latest developments in the natural product extracts and their derivatives or analogues from marine microorganisms to terrestrial plants as AF agents in the last five years. Moreover, this paper discusses the structures-activity relationship of these AF compounds and expands their AF mechanisms. Inspired by the molecular structure of natural products, some derivatives or analogues of natural product extracts and some novel strategies for improving the AF activity of protective coatings have been proposed as guidance for the development of a new generation of environmentally friendly AF agents.
Collapse
Affiliation(s)
- Wenwen Zhao
- Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Zhiqiang Wu
- Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Yanming Liu
- Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Pan Dai
- Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Guojuan Hai
- Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Feng Liu
- Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Yu Shang
- Xi’an Key Laboratory of High Performance Oil and Gas Field Materials, College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China
| | - Zhongyue Cao
- Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Wufang Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|