1
|
He ZC, Zhang T, Lu XF, Li R, Peng W, Mei Q, Wang QZ, Ding F. Assessing the nicotinic acetylcholine receptor-mediated enantioselective neurotoxicity of a neonicotinoid-like pollutant, chiral sulfoxaflor: Insight from the two asymmetric centers. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138468. [PMID: 40318584 DOI: 10.1016/j.jhazmat.2025.138468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/10/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Chiral sulfoxaflor is widely present in environmental matrices; however, the health hazards of this neonicotinoid-like pollutant remain poorly understood. This study investigated the nicotinic acetylcholine receptor (nAChR)-mediated neurotoxicity of sulfoxaflor at the enantiomeric level and elucidated the distinct roles of its two chiral centers. Results showed that the toxic response of nAChR to sulfoxaflor exhibits significant enantioselectivity and the affinity of α7 nAChR with (R,S)-/(S,S)-sulfoxaflor (-35.34/-34.84 kcal mol-1) is higher than those of their antipodes (-22.08/-22.76 kcal mol-1). The conjugations of (R,S)-/(S,S)-sulfoxaflor in agonistic mode at the orthosteric site induces crucial residues (e.g., Trp-147, Tyr-186, Leu-117) to shift toward the binding position (RMSF: 0.0968 nm to 0.3959/0.3801 nm), which disturbs the intrinsic conformational flexibility of α7 nAChR (random coil: 18.16-23.65 %/22.15 %), prompting (R,S)-/(S,S)-sulfoxaflor to exhibit enhanced activated efficacy. Furthermore, chirality at the sulfur atom plays a key role in the electrostatic contribution (ΔGele) to be different (-23.55/-22.3/-11.39/-12.73 kcal mol-1), rendering sulfoxaflor a higher enantioselective neurotoxicant. This study could pave away for untangling the health hazards associated with sulfoxaflor and prompt the legislature to develop environmental regulations for pollutants containing multiple chiral centers.
Collapse
Affiliation(s)
- Zhi-Cong He
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Tao Zhang
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Xin-Fang Lu
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Rui Li
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Wei Peng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Qiong Mei
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; School of Land Engineering, Shaanxi Provincial Key Laboratory of Land Consolidation, Chang'an University, Xi'an 710054, China
| | - Qi-Zhao Wang
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China
| | - Fei Ding
- School of Water and Environment, Key Laboratory of Subsurface Hydrology and Ecological Effect in Arid Region of Ministry of Education, Key Laboratory of Ecohydrology and Water Security in Arid and Semi-Arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
2
|
Shi H, Yan Z, Du H, Song K, Gun S. Structural characteristics of polysaccharide isolated from Potentilla anserina L. and its mitigating effect on Zearalenone-induced oxidative stress in Sertoli cells. Int J Biol Macromol 2025; 297:139752. [PMID: 39809396 DOI: 10.1016/j.ijbiomac.2025.139752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/18/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The present study aims to characterize the structural features of a natural polysaccharide called PAP-1b extracted from the roots of Potentilla anserina L. and to evaluate its antioxidant activity. Structural characterization indicated that PAP-1b with a molecular weight of 1.22 × 104 Da was primarily composed of glucose and galactose. Methylation and NMR analyses showed that PAP-1b mainly consisted of →4)-α-D-Glcp-(1→, →4,6)-β-D-Glcp-(1→, →3,4)-α-Glcp-(1→ and α-D-Glcp-(1→). Subsequently, we evaluated the antioxidant activity of PAP-1b using zearalenone (ZEA)-induced oxidative stress in porcine Sertoli cells (SCs) as a model. Cellular experiments revealed that PAP-1b significantly attenuated ZEA-induced oxidative stress in SCs via the mitochondrial pathway, as evidenced by the increase in cell viability, the enhancement of antioxidant enzyme activities, and the reduction of reactive oxygen species (ROS), lactate dehydrogenase (LDH) and malondialdehyde (MDA) levels, as well as stabilization of the mitochondrial membrane potential and the reduction of apoptosis rate. These results suggest that Potentilla anserina L. polysaccharides can serve as a promising natural antioxidant for applications in the field of functional foods.
Collapse
Affiliation(s)
- Haixia Shi
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Zunqiang Yan
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Hong Du
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Kelin Song
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China
| | - Shuangbao Gun
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730030, China; Gansu Innovation Research Center for Swine Production Engineering and Technology, Lanzhou 730070, China.
| |
Collapse
|
3
|
Tijani AS, Daba TM, Ubong IA, Olufunke O, Ani EJ, Farombi EO. Co-administration of thymol and sulfoxaflor impedes the expression of reproductive toxicity in male rats. Drug Chem Toxicol 2024; 47:618-632. [PMID: 37403475 DOI: 10.1080/01480545.2023.2232564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 07/06/2023]
Abstract
This study investigated the capability of a co-delivery system of thymol (THY) and sulfoxaflor that can serve to minimize the development of epididymal and testicular injury arise from SFX exposures alone. Forty-eight adult male rats were orally treated by gavage for 28 consecutive days. The rats were divided into six groups comprising control, THY alone (30 mg/kg), low SFX alone (79.4 mg/kg), high SFX alone (205 mg/kg) and co-exposure groups. After euthanasia, the rats epididymal and testicular damage and antioxidant status markers, myeloperoxidase (MPO) activity, levels of nitric oxide, total antioxidant capacity (TAC), total oxidative stress (TOS) and lipid peroxidation (LPO) were analyzed. Levels of tumor necrosis factor alpha (TNF-α), interleukin-1 b (IL-1β) and caspase-3 activity were assessed using ELISA kits. The results revealed that SFX exposure caused a significant (p < 0.05) decrease in the body weight, sperm functional parameters, serum testosterone level with widespread histological abnormalities in a dose-dependent manner. Increased relative organ weights, serum levels of luteinizing hormone (LH) and follicle stimulating hormone (FSH) were observed in low SFX-treated rats. Similarly, the epididymal and testicular myeloperoxidase activity, malondialdehyde (MDA), reactive oxygen species (RONS), tumor necrosis-α, interleukin-1β levels and caspase-3 activity were significant (p < 0.05) increased and a significant (p < 0.05) reduction in antioxidant enzyme activities and reduced glutathione (GSH) were revealed in SFX-treated rats. However, co-treatment of THY with SFX prevented SFX-induced epididymal and testicular toxicities. Thus, thymol protected against potential epididymis and testes alterations elicited by oxido-inflammatory mediators and up regulated antioxidant status.
Collapse
Affiliation(s)
- Abiola S Tijani
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Tolessa M Daba
- Department of Biochemistry, Molecular Biology and Genetics, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Ime A Ubong
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Onaadepo Olufunke
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Elemi J Ani
- Department of Physiology, School of Medicine and Pharmacy, College of Medicine and Health Sciences, University of Rwanda, Huye, Rwanda
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
4
|
Mahmoud AAN, Ahmed EA, Omar AR. Thiacloprid impairs reproductive functions of male Wistar rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6197-6211. [PMID: 38441570 PMCID: PMC11329541 DOI: 10.1007/s00210-024-03025-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/23/2024] [Indexed: 08/18/2024]
Abstract
Global male infertility correlated to the rise of endocrine-disrupting chemicals, including insecticides, has grown into a pressing problem. Thiacloprid is one of the most commonly used neonicotinoids that accounts for more than 25% of the global pesticide industry. However, its impact on the reproductive system and male fertility has not been fully elucidated. The object of this study was to explore the adverse effects of thiacloprid on male Wistar rats' reproductive system. Thirty healthy male rats were separated into one of three groups: control group, and two groups that were orally administered with low (22.5 mg/kg) and high dose (62.1 mg/kg) of thiacloprid for 56 days. Thiacloprid significantly (p<0.05) reduced body weight and relative testicular weight, as well as sperm quality (count, motility, viability, and morphology), in a dose-dependent manner. THIA-treated groups revealed a large effect (d > 0.8) on semen quality with Cohen's d of (6.57, 8.82), (20.14, 23.54), and (2.81, 9.10) for count, motility, and viability respectively. Meanwhile, the serum testosterone level dropped while the levels of luteinizing and follicle-stimulating hormones increased. 17ꞵ-hydroxy steroid dehydrogenase and 3ꞵ-hydroxy steroid dehydrogenase levels were significantly decreased in a dose-dependent manner. The activity of the tested antioxidant enzymes catalase (CAT), glutathione reduced (GSH), and superoxide dismutase (SOD) exhibited a considerable decrease compared to the control group with a significant elevation in the lipid peroxidation activity as indicated by malondialdehyde (MDA) level. The testicular histology revealed degenerative changes in spermatogenic cells and interstitial tissue. Comet assay revealed DNA fragmentation in treated groups' testicular tissue. Thiacloprid exposure interferes with reproductive function and impairs male Wistar rat fertility. Such harmful consequences may also develop in humans frequently exposed to thiacloprid.
Collapse
Affiliation(s)
| | | | - Amel Ramadan Omar
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| |
Collapse
|
5
|
Gautam R, Priyadarshini E, Patel AK, Arora T. Assessing the impact and mechanisms of environmental pollutants (heavy metals and pesticides) on the male reproductive system: a comprehensive review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:126-153. [PMID: 38240636 DOI: 10.1080/26896583.2024.2302738] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The escalation of technological advancements, coupled with the increased use of hazardous chemicals, has emerged as a significant concern for human health. Exposure to environmental pollutants like heavy metals and pesticides (insecticides, herbicides and fungicides) is known to significantly contribute to various health problems, particularly affecting reproductive health. Disturbances in reproductive potential and reproductive toxicity in males are particularly worrisome. Existing literature suggests that exposure to these environmental pollutants significantly alters male reproductive parameters. Thus, it is imperative to thoroughly analyze, comprehend, and evaluate their impact on male reproductive toxicity. Oxidative stress and disruptions in redox equilibrium are major factors through which these pollutants induce changes in sperm parameters and affect the reproductive system. Insecticides, fungicides, and herbicides act as endocrine disruptors, interfering with the secretion and function of reproductive hormones such as testosterone and luteinizing hormone (LH), consequently impacting spermatogenesis. Additionally, heavy metals are reported to bio-accumulate in reproductive organs, acting as endocrine disruptors and triggering oxidative stress. The co-operative association of these pollutants can lead to severe damage. In this comprehensive review, we have conducted an in-depth analysis of the impact of these environmental pollutants on the male reproductive system, shedding light on the underlying mechanisms of action.
Collapse
Affiliation(s)
- Rohit Gautam
- Division of RCN, Indian Council of Medical Research, New Delhi, India
| | | | - Arbind Kumar Patel
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Taruna Arora
- Division of RCN, Indian Council of Medical Research, New Delhi, India
| |
Collapse
|