1
|
Shaheen ME, Gagnon JE, Barrette JC, Keshta AE. Evaluation of pollution levels in sediments from Lake Edku, Egypt using laser ablation inductively coupled plasma mass spectrometry. MARINE POLLUTION BULLETIN 2024; 202:116387. [PMID: 38663346 DOI: 10.1016/j.marpolbul.2024.116387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
The concentrations of 11 heavy metals in sediments from Lake Edku, Egypt were determined using LA-ICP-MS. The average concentrations of elements occurred in the order of Fe > V > Cr > Zn > Ni > Cu > Co > Pb > As > Sn > Mo with respective values of 4.67 %, 104.8, 77.9, 76.6, 59.2, 52, 27.8, 19.8, 4.14, 2.24, and 1.45 μg/g. Several pollution indices were used to evaluate individual and cumulative contamination levels. All HMs were found to be in the deficiency to minimal enrichment range based on the enrichment factor. The contamination factor indicated low contamination levels of Cr and As, low to moderate contamination levels of Fe, Ni, Zn, Mo, Sn, and Pb, and moderate contamination levels of Co and Cu. The pollution load index and contamination degree indicated the sediments to be polluted and moderately polluted, respectively.
Collapse
Affiliation(s)
- Mohamed E Shaheen
- Physics Department, Faculty of Science, Tanta University, Tanta 31512, Egypt.
| | - Joel E Gagnon
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada; School of the Environment, University of Windsor, Windsor, ON, Canada
| | - J C Barrette
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, Canada
| | - Amr E Keshta
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta 31512, Egypt
| |
Collapse
|
2
|
Xie H, Shi Y, Wang L, Yan H, Ci M, Wang Z, Chen Y. Source and risk assessment of heavy metals in mining-affected areas in Jiangxi Province, China, based on Monte Carlo simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21765-21780. [PMID: 38393575 DOI: 10.1007/s11356-024-32554-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
In recent years, heavy metal contamination of soils has become a major concern in China due to the potential risks involved. To assess environmental pollution and human health risks in a typical heavy metal polluted site in Jiangxi Province, a thorough evaluation of the distribution, pollution levels, and sources of heavy metals in soils of the Yangmeijiang River watershed was conducted in this study. Positive matrix factorization and Monte Carlo simulation were used to evaluate the ecological and human health risks of heavy metals. The research findings indicate that heavy metal pollution was the most severe at the depth of 20-40 cm in soils, with local heavy metal pollution resulting from mining and sewage irrigation. The high-risk area accounted for 91.11% of the total area. However, the pollution level decreased with time due to sampling effects, rainfall, and control measures. Leaf-vegetables and rice were primarily polluted by Cd and Pb. The main four sources of heavy metals in soils were traffic emission, metal smelting, agricultural activities and natural sources, mining extraction, and electroplating industries. Heavy metals with the highest ecological risk and health risk are Cd and As, respectively. The non-carcinogenic and carcinogenic risks of children were 7.0 and 1.7 times higher than those of adults, respectively. Therefore, children are more likely to be influenced by heavy metals compared to adults. The results obtained by the risk assessments may contribute to the identification of specific sources of heavy metals (e.g., traffic emissions, metal smelting, mining excavation, and electroplating industries). Additionally, the environmental impacts and biotoxicity associated with various heavy metals (e.g., Cd and As) can also be reflected. These outcomes may serve as a scientific basis for the pollution monitoring and remediation in the mining-affected areas.
Collapse
Affiliation(s)
- Haijian Xie
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310027, China
- Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hanghzou, 310007, China
| | - Yanghui Shi
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310027, China
- The Architectural Design and Research Institute of Zhejiang University Co., Ltd., 148 Tianmushan Road, Hangzhou, 310028, China
| | - Liang Wang
- The Architectural Design and Research Institute of Zhejiang University Co., Ltd., 148 Tianmushan Road, Hangzhou, 310028, China
| | - Huaxiang Yan
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Manting Ci
- College of Civil Engineering and Architecture, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310027, China
- The Architectural Design and Research Institute of Zhejiang University Co., Ltd., 148 Tianmushan Road, Hangzhou, 310028, China
| | - Ziheng Wang
- Zijin School of Geology and Mining, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yun Chen
- Center for Balance Architecture, Zhejiang University, 148 Tianmushan Road, Hanghzou, 310007, China
| |
Collapse
|
3
|
Radomirović M, Miletić A, Onjia A. Accumulation of heavy metal(loid)s and polycyclic aromatic hydrocarbons in the sediment of the Prahovo Port (Danube) and associated risks. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:323. [PMID: 36692645 DOI: 10.1007/s10661-023-10926-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The current study investigated the concentrations, possible sources, toxicity, and ecological risk of eight heavy metal(loid)s (As, Cd, Cr, Cu, Hg, Ni, Pb, Zn) and sixteen priority polycyclic aromatic hydrocarbons (PAHs) in surface sediments in the port of Prahovo (Danube, Serbia). Among the examined HMs, the most abundant was Cu (38.3 mg/kg), followed by Zn. The Σ16PAHs concentrations ranged from 25 to 112.5 µg/kg, with 4-ring PAHs (17.3 µg/kg) being the most dominant in the study area. The mean and maximum values of HMs and PAHs obtained in this study were below the national regulatory limits and within environmental criteria. Particularly significant correlations between As, Cd, Cr, Ni, Pb, Zn, 5-, 6-ring PAHs, as well as between Pb and Hg, indicated their similar anthropogenic sources, pathways, and adsorption mechanisms. These findings were confirmed by cluster analysis and principal component analysis. Diagnostic ratios demonstrated that contamination in inner port stations was characterized by pyrogenic sources, while PAHs of petrogenic origin prevailed in samples near the port entrance. The mean ERM quotient (mERMq), toxic risk index (TRI), and toxic equivalent quotient (TEQ) were also calculated to assess the toxicity of the investigated HMs and PAHs in sediments. Positive matrix factorization suggested four potential sources as the main components of sediment contamination, whereas the risk assessment indicated a low or relatively insignificant risk of adverse biological effects from the combined toxicity of HMs and PAHs for the entire study area.
Collapse
Affiliation(s)
- Milena Radomirović
- Innovation Center of the Faculty of Technology and Metallurgy, Karnegijeva 4, 11000, Belgrade, Serbia.
| | - Andrijana Miletić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia
| | - Antonije Onjia
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000, Belgrade, Serbia
| |
Collapse
|