1
|
Martins E, Trigueiro P, Jerônimo AG, Barbosa R, Neves L, Sales DA, Almeida LC, Viana BC, Soares AS, Peña-Garcia RR. Efficient photocatalytic degradation of diclofenac drug using the Zn 1-x-yPr xAl yO photocatalyst under UV light irradiation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:53074-53089. [PMID: 39172341 DOI: 10.1007/s11356-024-34768-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Herein, we report the efficient photocatalytic degradation of the diclofenac drug using the Zn1-x-yPrxAlyO photocatalyst [x, y] = (0.00, 0.00), (0.03, 0.01), (0.03,0.03) under UV light irradiation. The analysis of the structure reveals that the Pr3+ and Al3+ cations insertion into the ZnO lattice leads to a decrease in the lattice constant (a and c), Zn-O bond length, strain lattice, and crystallite size. These alterations are linked to the high degree of atomic disorder triggered by the dopants, which produce stress and strain in the ZnO structure. The Raman measurements confirmed the structural phase and showed changes in the position and intensity of the E2High mode, associated with oxygen vibrations and material crystallinity. The presence of the dopants reduces the concentration of VZn and VO++ type defects while increasing the levels of VO, VO+, and Oi defects, as observed from the fitting of the Photoluminescence spectra. Furthermore, it was noted that de Pr3+ and Al3+ cations insertion into ZnO increases the optical band gap, which is associated with the Moss-Burstein effect. The micrograph images show that dopants transform the morphology from quasi-spherical particles to irregular cluster structures. The textural analysis indicated that an increase in the concentration of Al3+ in the ZnO lattice led to a higher surface area, likely enhancing photocatalytic activity. The sample containing 3% Pr3+ and 3% Al3+ showed the highest photocatalytic activity and degraded up to 71.42% of diclofenac. In addition, experiments with scavengers revealed that hydroxyl radicals are the main species involved in the drug's photodegradation mechanism. Finally, the Zn1-x-yPrxAlyO compound is highly recyclable and stable.
Collapse
Affiliation(s)
- Emanoel Martins
- Programa de Pós-Graduação Em Ciências E Engenharia Dos Materiais, Universidade Federal de Piauí, Teresina, PI, Brazil
| | - Pollyana Trigueiro
- Programa de Pós-Graduação Em Engenharia Física, Universidade Federal Rural de Pernambuco, Unidade Acadêmica Do Cabo de Santo Agostinho, Cabo de Santo Agostinho, PE, Brazil
| | - Aimée G Jerônimo
- Programa de Pós-Graduação Em Engenharia Física, Universidade Federal Rural de Pernambuco, Unidade Acadêmica Do Cabo de Santo Agostinho, Cabo de Santo Agostinho, PE, Brazil
| | - Ricardo Barbosa
- Programa de Pós-Graduação Em Engenharia Física, Universidade Federal Rural de Pernambuco, Unidade Acadêmica Do Cabo de Santo Agostinho, Cabo de Santo Agostinho, PE, Brazil
| | - Luan Neves
- Programa de Pós-Graduação Em Engenharia Física, Universidade Federal Rural de Pernambuco, Unidade Acadêmica Do Cabo de Santo Agostinho, Cabo de Santo Agostinho, PE, Brazil
| | - Débora A Sales
- Programa de Pós-Graduação Em Ciências E Engenharia Dos Materiais, Universidade Federal de Piauí, Teresina, PI, Brazil
| | - Luciano C Almeida
- Departamento de Engenharia Química, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Bartolomeu C Viana
- Programa de Pós-Graduação Em Ciências E Engenharia Dos Materiais, Universidade Federal de Piauí, Teresina, PI, Brazil
| | - Adriano S Soares
- Programa de Pós-Graduação Em Ciências E Engenharia Dos Materiais, Universidade Federal de Piauí, Teresina, PI, Brazil
| | - Ramón R Peña-Garcia
- Programa de Pós-Graduação Em Ciências E Engenharia Dos Materiais, Universidade Federal de Piauí, Teresina, PI, Brazil.
- Programa de Pós-Graduação Em Engenharia Física, Universidade Federal Rural de Pernambuco, Unidade Acadêmica Do Cabo de Santo Agostinho, Cabo de Santo Agostinho, PE, Brazil.
| |
Collapse
|
2
|
Prasher IB, Ahmad N, Ahmed M, Raghuwanshi S, Kumar V, Siddiqui SI, Oh S. Live Biomass of Rigidoporus vinctus: A Sustainable Method for Decoloration and Detoxification of Dyes in Water. Microorganisms 2023; 11:1435. [PMID: 37374937 DOI: 10.3390/microorganisms11061435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
In this study, white-rot fungus, Rigidoporus vinctus, collected from an unidentified fallen twig from Pathankot, Punjab, India, was used for biosorption of anionic Congo red and cationic Methylene blue dyes from an aqueous medium. The biosorption efficiency of the live biomass of Rigidoporus vinctus was investigated to optimize biosorbent dosage, process time, concentrations of dyes, and pH of solutions. The results indicated that Rigidoporus vinctus is more efficient than other reported bio-adsorbents for Congo red and Methylene blue dyes. The maximum biosorption activity of Rigidoporus vinctus for Congo red was found at pH 2, and that for Methylene blue was at pH 10, after 24 h of the reaction period. The process followed pseudo-second-order kinetics, which indicated that the interaction of both dyes to the adsorption sites on the surface of Rigidoporus vinctus was responsive to biosorption. The biosorption process could be well explained by the Langmuir isotherm for both dyes. The maximum monolayer biosorption capacity of Rigidoporus vinctus for Congo red and Methylene blue was observed to be 54.0 mg/g and 80.6 mg/g, respectively. The seed germination test was carried out, and it was assessed that the toxicity of dyes was reduced up to significant levels. Based on the present experimental findings, it can be concluded that biosorption using the live biomass of Rigidoporus vinctus can effectively decolorize dye-containing wastewater, thus reducing the hazardous effects of dyes on human beings.
Collapse
Affiliation(s)
- I B Prasher
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mukhtar Ahmed
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | | | - Vijay Kumar
- Department of Botany, Panjab University, Chandigarh 160014, India
| | - Sharf Ilahi Siddiqui
- Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India
- Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Seungdae Oh
- Department of Civil Engineering, Kyung Hee University, Yongin-si 17104, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Asmare Z, Aragaw BA, Atlabachew M, Wubieneh TA. Kaolin-Supported Silver Nanoparticles as an Effective Catalyst for the Removal of Methylene Blue Dye from Aqueous Solutions. ACS OMEGA 2023; 8:480-491. [PMID: 36643474 PMCID: PMC9835165 DOI: 10.1021/acsomega.2c05265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Water contamination by organic dyes has become a reason for severe environmental pollution and has been threatening the aquatic ecosystem. In this study, kaolin-supported silver nanoparticle (Ag-NP) composites were synthesized by a facile two-step adsorption-reduction method through the reduction of silver ions adsorbed onto locally available, inexpensive, and easily pretreated kaolin surfaces by using sodium borohydride (NaBH4) for the catalytic degradation of methylene blue (MB) dye in aqueous solution. The morphology, structure, surface area, and interaction of the synthesized materials were investigated by scanning electron microscopy, X-ray diffraction, Brunauer-Emmett-Teller, and Fourier transform infrared spectroscopy, respectively. Characterization results showed the successful growth of Ag-NPs on the kaolin surface. To understand the catalytic degradation performance of the catalyst, batch experiments were carried out using MB dye as a model dye. The catalytic reduction tests confirmed the importance of Ag-NPs and the high catalytic activities of the synthesized Ag-NPs/kaolin composite toward MB dye reduction. The degradation results indicated that the increased Ag-NP content on the kaolin surface through repeating cycles could effectively enhance the removal of MB dye from an aqueous solution. The kinetic analysis of the MB dye degradation of the catalyst has fitted the pseudo-first-order kinetic model. More than 97% removal efficiency was still present after five reuse cycles, demonstrating exceptional stability and reusability of the composite. In conclusion, the Ag-NPs supported kaolin (Ag-NPs/kaolin) composite was found to be a promising catalyst for the excellent catalytic activity to reduce a model dye MB from the aqueous solution in the presence of NaBH4 with catalytic efficiency higher than 97% and a reduction rate constant, k red, higher than 0.86 min-1.
Collapse
Affiliation(s)
- Zinabu
Gashaw Asmare
- Department
of Chemistry, College of Science, Bahir
Dar University, P.O. Box 79, Bahir Dar6000, Ethiopia
| | - Belete Asefa Aragaw
- Department
of Chemistry, College of Science, Bahir
Dar University, P.O. Box 79, Bahir Dar6000, Ethiopia
| | - Minaleshewa Atlabachew
- Department
of Chemistry, College of Science, Bahir
Dar University, P.O. Box 79, Bahir Dar6000, Ethiopia
| | - Tessera Alemneh Wubieneh
- Department
of Materials Science and Engineering, College
of Science, Bahir Dar University, P.O. Box 79, Bahir Dar6000, Ethiopia
| |
Collapse
|
4
|
Gold nanoparticles decorated two-dimensional TiO2 nanosheets as effective catalyst for nitroarenes and rhodamine B dye reduction in batch and continuous flow methods. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Synthesis of zeolitic imidazolate framework-8 (ZIF-8) using different solvents for lead and cadmium adsorption. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02680-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|