1
|
Farnoosh S, Masoudian N, Safipour Afshar A, Nematpour FS, Roudi B. Foliar-applied iron and zinc nanoparticles improved plant growth, phenolic compounds, essential oil yield, and rosmarinic acid production of lemon balm (Melissa officinalis L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36882-36893. [PMID: 38758440 DOI: 10.1007/s11356-024-33680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Metallic nanoparticles (NPs) have been highlighted to improve plant growth and development in the recent years. Although positive effects of some NPs have been reported on medicinal plants, the knowledge for stimulations application of iron (Fe) and zinc (Zn) NPs is not available. Hence, the present work aimed to discover the effects of Fe NPs at 10, 20, and 30 mg L-1 and Zn NPs at 60 and 120 mg L-1 on growth, water content, photosynthesis pigments, phenolic content, essential oil (EO) quality, and rosmarinic acid (RA) production of lemon balm (Melissa officinalis L.). The results showed that Fe NPs at 20 and 30 mg L-1 and Zn NPs at 120 mg L-1 significantly improved biochemical attributes. Compared with control plants, the interaction of Fe NPs at 30 mg-1 and Zn NPs at 120 mg L-1 led to noticeable increases in shoot weight (72%), root weight (92%), chlorophyll (Chl) a (74%), Chl b (47%), RA (66%), proline (81%), glycine betaine (GB, 231%), protein (286%), relative water content (8%), EO yield (217%), total phenolic content (63%), and total flavonoid content (57%). Heat map analysis revealed that protein, GB, EO yield, shoot weight, root weight, and proline had the maximum changes upon Fe NPs. Totally, the present study recommended the stimulations application of Fe NPs at 20-30 mg L-1 and Zn NPs at 120 mg L-1 to reach the optimum growth and secondary metabolites of lemon balm.
Collapse
Affiliation(s)
- Samaneh Farnoosh
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Nahid Masoudian
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | | | - Bostan Roudi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
2
|
Amirfakhrian Z, Abdossi V, Mohammadi Torkashvand A, Weisany W, Ghanbari Jahromi M. Co-applied magnesium nanoparticles and biochar modulate salinity stress via regulating yield, biochemical attribute, and fatty acid profile of Physalis alkekengi L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31806-31817. [PMID: 38637482 DOI: 10.1007/s11356-024-33329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
While previous studies have addressed the desirable effects of biochar (BC) or magnesium nanoparticles (Mg NPs) on salinity stress individually, there is a research gap regarding their simultaneous application. Additionally, the specific mechanisms underlying the effects of BC and Mg NPs on salinity in Physalis alkekengi L. remain unclear. This study aimed to investigate the synergistic effects of BC and Mg NPs on P. alkekengi L. under salinity stress conditions. A pot experiment was conducted with salinity at 100 and 200 mM sodium chloride (NaCl), as well as soil applied BC (4% v/v) and foliar applied Mg NPs (500 mg L-1) on physiological and biochemical properties of P. alkekengi L. The results represented that salinity, particularly 200 mM NaCl, significantly reduced plant yield (58%) and total chlorophyll (Chl, 36%), but increased superoxide dismutase (SOD, 82%) and catalase (CAT, 159%) activity relative to non-saline conditions. However, the co-application of BC and Mg NPs mitigated these negative effects and improved fruit yield, Chl, anthocyanin, and ascorbic acid. It also decreased the activity of antioxidant enzymes. Salinity also altered the fatty acid composition, increasing saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs), while decreasing monounsaturated fatty acids (MUFAs). The heat map analysis showed that fruit yield, anthocyanin, Chl, and CAT were sensitive to salinity. The findings can provide insights into the possibility of these amendments as sustainable strategies to mitigate salt stress and enhance plant productivity in affected areas.
Collapse
Affiliation(s)
- Zahra Amirfakhrian
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Abdossi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Weria Weisany
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Ali S, Ulhassan Z, Shahbaz H, Kaleem Z, Yousaf MA, Ali S, Sheteiwy MS, Waseem M, Ali S, Zhou W. Application of magnesium oxide nanoparticles as a novel sustainable approach to enhance crop tolerance to abiotic and biotic stresses. ENVIRONMENTAL SCIENCE: NANO 2024; 11:3250-3267. [DOI: 10.1039/d4en00417e] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Abiotic stresses (heavy metals, drought, salinity, etc.) or biotic pathogens (bacteria, fungi, nematodes, etc.) contribute to major losses in crop yields.
Collapse
Affiliation(s)
- Sharafat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Hafsah Shahbaz
- School of Environment and Safety Engineering, School of Emergency Management, Jiangsu Province Engineering Research Center of Green Technology and Contingency Management for Emerging Pollutants, Jiangsu University, Zhenjiang, China
| | - Zohaib Kaleem
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Arslan Yousaf
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Skhawat Ali
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| | - Mohamed S. Sheteiwy
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, Abu-Dhabi, United Arab Emirates
- Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Muhammad Waseem
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan
| | - Weijun Zhou
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Key Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Bhattacharya S, Gupta S, Saha J. Nanoparticles regulate redox metabolism in plants during abiotic stress within hormetic boundaries. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:850-869. [PMID: 37757867 DOI: 10.1071/fp23068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023]
Abstract
Abiotic stress management remains under scrutiny because of the unpredictable nature of climate, which undergoes abrupt alterations. Population pressure, loss of cultivable lands, environmental pollution and other anthropogenic disturbances add to the problem and grossly hinder ongoing management strategies. This has driven increasing effort to find better performing, eco-friendly and reliable alternatives that can contribute to sustainable agricultural practices to manage abiotic stress. Nanotechnology and its implementation in agriculture have emerged as a promising option to cater to the problem of abiotic stress. Induction of reactive oxygen species (ROS) is an inevitable phenomenon linked to stress. Nanoparticles (NPs) perform dual actions in regulating ROS biology. The bidirectional roles of NPs in modulating ROS generation and/or ROS detoxification is tightly coupled within the hormetic boundaries. Nonetheless, how these NPs control the ROS metabolism within hormetic limits demands extensive investigation. This review focuses on the details of ROS metabolism under normal versus stressed conditions. It shall elaborate on the types, modes and process of uptake and translocation of NPs. The molecular dissection of the role of NPs in controlling transcriptomic expressions and modulating molecular crosstalks with other growth regulators, ions, reactive nitrogen species and other signalling molecules shall also be detailed. Throughout, this review aims to summarise the potential roles and regulation of NPs and consider how they can be used for green synthesis within a sustainable agricultural industry.
Collapse
Affiliation(s)
- Saswati Bhattacharya
- Department of Botany, Dr. A.P.J. Abdul Kalam Government College, New Town, Rajarhat, India
| | - Sumanti Gupta
- Department of Botany, Rabindra Mahavidyalaya, Champadanga, Hooghly, West Bengal, India
| | - Jayita Saha
- Department of Botany, Rabindra Mahavidyalaya, Champadanga, Hooghly, West Bengal, India
| |
Collapse
|
5
|
Silva S, Dias MC, Pinto DCGA, Silva AMS. Metabolomics as a Tool to Understand Nano-Plant Interactions: The Case Study of Metal-Based Nanoparticles. PLANTS (BASEL, SWITZERLAND) 2023; 12:491. [PMID: 36771576 PMCID: PMC9921902 DOI: 10.3390/plants12030491] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Metabolomics is a powerful tool in diverse research areas, enabling an understanding of the response of organisms, such as plants, to external factors, their resistance and tolerance mechanisms against stressors, the biochemical changes and signals during plant development, and the role of specialized metabolites. Despite its advantages, metabolomics is still underused in areas such as nano-plant interactions. Nanoparticles (NPs) are all around us and have a great potential to improve and revolutionize the agri-food sector and modernize agriculture. They can drive precision and sustainability in agriculture as they can act as fertilizers, improve plant performance, protect or defend, mitigate environmental stresses, and/or remediate soil contaminants. Given their high applicability, an in-depth understanding of NPs' impact on plants and their mechanistic action is crucial. Being aware that, in nano-plant interaction work, metabolomics is much less addressed than physiology, and that it is lacking a comprehensive review focusing on metabolomics, this review gathers the information available concerning the metabolomic tools used in studies focused on NP-plant interactions, highlighting the impact of metal-based NPs on plant metabolome, metabolite reconfiguration, and the reprogramming of metabolic pathways.
Collapse
Affiliation(s)
- Sónia Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Maria Celeste Dias
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Diana C. G. A. Pinto
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M. S. Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|