1
|
Mumtaz F, Farag BM, Farahat MA, Farouk FA, Aarif MY, Eltresy MH, Amin MH, Habotta OA, Alneghery LM, Alawam AS, Almuqri EA, Aleissa MS, Alhudhaibi AM, Al-Olayan E, Abdel Moneim AE, Ramadan SS. Leek (Allium ampeloprasum var. kurrat) aqueous extract loaded on selenium nanoparticles protects against testis and brain injury induced by mercuric chloride in rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:9062-9075. [PMID: 38993070 DOI: 10.1002/jsfa.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/11/2024] [Accepted: 06/24/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Mercuric chloride (HgCl2) is poisonous to humans and animals and typically damages the nervous system and other organs. Mercuric chloride exposition disclosed to initiation of oxidative stress pathway can result in a defect in male fertility and testis tissue. Synthesized selenium nanoparticles (SeNPs) were characterized with a diameter range minimal than 100 nm, having the effective sets of the biological matter. The present study aimed to evaluate the effect of biosynthesized SeNPs, prepared by leek extract on Wistar rats' testicles and brain. METHODS Thirty-five Wistar male rats (120-150 g) were randomly split into five groups (n = 7), orally ingested with leek aqueous extract loaded on SeNPs, and then the animals were administered with mercury II chloride (HgCl2) to induce testis injury and damage the nervous system. RESULTS The used dose of mercuric chloride led to oxidative stress damage in the testis of the rats which was evidenced by a decrease in testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH) and proliferating cell nuclear antigen (PCNA) levels, and an increase in nuclear factor-kappa B (NF-κB) and caspase-3. Also, HgCl2 decreased the levels of dopamine (DA), serotonin (5-HT), norepinephrine (NE) and brain-derived neurotrophic factor (BDNF) in the brains of rats. In addition, A decrease was observed in the levels of antioxidant markers, B-cell lymphoma-2 (Bcl-2), as well as an increase in malondialdehyde (MDA), nitric oxide (NO), NF-κB, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and Bax in both testes and brains. Pre-treatment with leek extract loaded on SeNPs significantly ameliorated testosterone, LH, FSH, PCNA and caspase-3 levels in the testis and DA, 5-HT, NE and BDNF in brains. Although the contents of MDA, NO, TNF-α, IL-1β, NF-κB and Bax decreased significantly in both. glutathione, glutathione peroxidase, glutathione reductase, catalase, superoxide dismutase and Bcl-2 levels were significantly improved in both organs. CONCLUSION Our findings suggest that treatment with aqueous leek extract loaded on SeNPs may offer promising prospects for the advancement of anti-inflammation activity against testis injury and also have a very key role in neurobehavioral alterations as a result of mercury toxicity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Farah Mumtaz
- Department of Biology, Collage of Science, University of Babylon, Babylon, Iraq
| | - Bahaa M Farag
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mennatullah A Farahat
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Fatma A Farouk
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Moataz Y Aarif
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mohamed H Eltresy
- Molecular Biotechnology Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Menna H Amin
- Biochemistry Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Lina M Alneghery
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdullah S Alawam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Eman A Almuqri
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Mohammed S Aleissa
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Abdulrahman M Alhudhaibi
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Ebtesam Al-Olayan
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shimaa S Ramadan
- Biochemistry Sector, Chemistry Department, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
2
|
Wang A, Liu Y, Xiong W, Li W, Li J, Yang Z, Zou Z, Luo Y, Chen Z, Li H, Vong CT, Zou L. Targeting Inflammatory Lesions Facilitated by Galactosylation Modified Delivery System Eudragit/Gal-PLGA@Honokiol for the treatment of Ulcerative Colitis. J Pharm Sci 2024; 113:2744-2755. [PMID: 38901529 DOI: 10.1016/j.xphs.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Honokiol (HNK) is one of the bioactive ingredients from the well-known Chinese herbal medicine Magnolia officinalis, and its research interests is rising for its extensive pharmacological activities, including novel therapeutic effect on ulcerative colitis (UC). However, further application of HNK is largely limited by its unique physicochemical properties, such as poor water solubility, low bioavailability, as well as unsatisfied targeting efficacy for inflammatory lesions. In this study, we constructed galactosylation modified PLGA nanoparticles delivery system for efficient target delivery of HNK to the colitic lesions, which could lay a research foundation for the deep development of HNK for the treatment of UC. D-galactose was grafted by chemical coupling reactions with PLGA to prepare Gal-PLGA, which was used as a carrier for HNK (Gal-PLGA@HNK nanoparticles (NPs)). To improve the colon targeting efficiency by oral administration of the NPs, Eudragit S100 was used for wrapping on the surface of Gal-PLGA@HNK NPs (E/Gal-PLGA@HNK NPs). Our results showed that the encapsulation efficiency and drug loading capacity of E/Gal-PLGA@HNK NPs were 90.72 ± 0.54% and 8.41 ± 0.02%, respectively. Its average particle size was 242.24 ± 8.42 nm, with a PDI value of 0.135 ± 0.06 and zeta-potential of -16.83 ± 1.89 mV. The release rate of HNK from E/Gal-PLGA@HNK NPs was significantly decreased when compared with that of free HNK in simulated gastric and intestinal fluids, which displayed a slow-releasing property. It was also found that the cellular uptake of E/Gal-PLGA@HNK NPs was significantly increased when compared with that of free HNK in RAW264.7 cells, which was facilitated by D-galactose grafting on the PLGA carrier. Additionally, our results showed that E/Gal-PLGA@HNK NPs significantly improved colonic atrophy, body weight loss, as well as reducing disease activity index (DAI) score and pro-inflammatory cytokine levels in UC mice induced by DSS. Besides, the retention time of E/Gal-PLGA@HNK NPs in the colon was significantly increased when compared with that of other preparations, suggesting that these NPs could prolong the interaction between HNK and the injured colon. Taken together, the efficiency for target delivery of HNK to the inflammatory lesions was significantly improved by galactosylation modification on the PLGA carrier, which provided great benefits for the alleviation of colonic inflammation and injury in mice.
Collapse
Affiliation(s)
- Anqi Wang
- School of Food and Bioengineering, Institute for advanced study, Chengdu University, Chengdu 610106, China; Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Yuanyuan Liu
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Wugui Xiong
- School of Food and Bioengineering, Institute for advanced study, Chengdu University, Chengdu 610106, China
| | - Wei Li
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Jin Li
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Zhiqiang Yang
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Zhongtao Zou
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Yinjia Luo
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China
| | - Zhoujiang Chen
- School of Food and Bioengineering, Institute for advanced study, Chengdu University, Chengdu 610106, China
| | - Hanmei Li
- School of Food and Bioengineering, Institute for advanced study, Chengdu University, Chengdu 610106, China
| | - Chi Teng Vong
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Liang Zou
- School of Food and Bioengineering, Institute for advanced study, Chengdu University, Chengdu 610106, China; Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, Chengdu University, Chengdu 610052, China.
| |
Collapse
|
3
|
Tian Y, Hu Q, Sun Z, Yu Y, Li X, Tian T, Bi X, Li Y, Niu B, Zhang Z. Colon Targeting pH-Responsive Coacervate Microdroplets for Treatment of Ulcerative Colitis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311890. [PMID: 38577919 DOI: 10.1002/smll.202311890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/11/2024] [Indexed: 04/06/2024]
Abstract
Ulcerative colitis (UC), an immune-mediated chronic inflammatory disease, drastically impacts patients' quality of life and increases their risk of colorectal cancer worldwide. However, effective oral targeted delivery and retention of drugs in colonic lesions are still great challenges in the treatment of UC. Coacervate microdroplets, formed by liquid-liquid phase separation, are recently explored in drug delivery as the simplicity in fabrication, spontaneous enrichment on small molecules and biological macromolecules, and high drug loading capacity. Herein, in this study, a biocompatible diethylaminoethyl-dextran hydrochloride/sodium polyphenylene sulfonate coacervates, coated with eudragit S100 to improve the stability and colon targeting ability, named EU-Coac, is developed. Emodin, an active ingredient in traditional Chinese herbs proven to alleviate UC symptoms, is loaded in EU-Coac (EMO@EU-Coac) showing good stability in gastric acid and pepsin and pH-responsive release behavior. After oral administration, EMO@EU-Coac can effectively target and retain in the colon, displaying good therapeutic effects on UC treatment through attenuating inflammation and oxidative stress response, repairing colonic epithelia, as well as regulating intestinal flora balance. In short, this study provides a novel and facile coacervate microdroplet delivery system for UC treatment.
Collapse
Affiliation(s)
- Yinmei Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Qian Hu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhengjun Sun
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yulin Yu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaonan Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Tianyi Tian
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinying Bi
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yang Li
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Boning Niu
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiping Zhang
- Tongji School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Engineering Research Centre for Novel Drug Delivery System, Wuhan, 430030, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
4
|
Lokman MS, Kassab RB, Salem FAM, Elshopakey GE, Hussein A, Aldarmahi AA, Theyab A, Alzahrani KJ, Hassan KE, Alsharif KF, Albrakati A, Tayyeb JZ, El-Khadragy M, Alkhateeb MA, Al-Ghamdy AO, Althagafi HA, Abdel Moneim AE, El-Hennamy RE. Asiatic acid rescues intestinal tissue by suppressing molecular, biochemical, and histopathological changes associated with the development of ulcerative colitis. Biosci Rep 2024; 44:BSR20232004. [PMID: 38699907 PMCID: PMC11130539 DOI: 10.1042/bsr20232004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/14/2024] [Accepted: 03/25/2024] [Indexed: 05/05/2024] Open
Abstract
Asiatic acid (AA) is a polyphenolic compound with potent antioxidative and anti-inflammatory activities that make it a potential choice to attenuate inflammation and oxidative insults associated with ulcerative colitis (UC). Hence, the present study aimed to evaluate if AA can attenuate molecular, biochemical, and histological alterations in the acetic acid-induced UC model in rats. To perform the study, five groups were applied, including the control, acetic acid-induced UC, UC-treated with 40 mg/kg aminosalicylate (5-ASA), UC-treated with 20 mg/kg AA, and UC-treated with 40 mg/kg AA. Levels of different markers of inflammation, oxidative stress, and apoptosis were studied along with histological approaches. The induction of UC increased the levels of lipid peroxidation (LPO) and nitric oxide (NO). Additionally, the nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream antioxidant proteins [catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH), glutathione peroxidase (GPx), and glutathione reductase (GR)] were down-regulated in the colon tissue. Moreover, the inflammatory mediators [myeloperoxidase (MPO), monocyte chemotactic protein 1 (MCP1), prostaglandin E2 (PGE2), nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β)] were increased in the colon tissue after the induction of UC. Notably, an apoptotic response was developed, as demonstrated by the increased caspase-3 and Bax and decreased Bcl2. Interestingly, AA administration at both doses lessened the molecular, biochemical, and histopathological changes following the induction in the colon tissue of UC. In conclusion, AA could improve the antioxidative status and attenuate the inflammatory and apoptotic challenges associated with UC.
Collapse
Affiliation(s)
- Maha S Lokman
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdul Aziz University, Al-Kharj, Saudi Arabia
- Department of Zoology and Entomology, Faculty of Science, Helwan University, 11795, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, 11795, Egypt
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Fatma A M Salem
- Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan 11795, Cairo, Egypt
| | - Gehad E Elshopakey
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Akram Hussein
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt
| | - Ahmed A Aldarmahi
- Department of Basic Science, College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, National Guard-Health Affairs, P.O. Box 3660 Riyadh 11481, Saudi Arabia
| | - Abdulrahman Theyab
- College of Medicine, Al-Faisal University, P.O. Box 50927, Riyadh 11533, Saudi Arabia
- Department of Laboratory & Blood Bank, Security Forces Hospital, P.O. Box 14799, Mecca 21955, Saudi Arabia
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalid E Hassan
- Department of Pathology, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Jehad Z Tayyeb
- Department of Clinical Biochemistry, College of Medicine, University of Jeddah, Jeddah 23890, Saudi Arabia
| | - Manal El-Khadragy
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Mariam A Alkhateeb
- Department of Biology, Faculty of Science, Princess Nourah bint Abdulrahman University, Riyadh 84428, Saudi Arabia
| | - Ali O Al-Ghamdy
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Al-Baha, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, 11795, Egypt
| | - Rehab E El-Hennamy
- Department of Zoology and Entomology, Faculty of Science, Helwan University, 11795, Egypt
| |
Collapse
|
5
|
Ansari JA, Malik JA, Ahmed S, Manzoor M, Ahemad N, Anwar S. Recent advances in the therapeutic applications of selenium nanoparticles. Mol Biol Rep 2024; 51:688. [PMID: 38796570 PMCID: PMC11127871 DOI: 10.1007/s11033-024-09598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/30/2024] [Indexed: 05/28/2024]
Abstract
Selenium nanoparticles (SeNPs) are an appealing carrier for the targeted delivery. The selenium nanoparticles are gaining global attention because of the potential therapeutic applications in several diseases e.g., rheumatoid arthritis (RA), inflammatory bowel disease (IBD), asthma, liver, and various autoimmune disorders like psoriasis, cancer, diabetes, and a variety of infectious diseases. Despite the fact still there is no recent literature that summarises the therapeutic applications of SeNPs. There are some challenges that need to be addressed like finding targets for SeNPs in various diseases, and the various functionalization techniques utilized to increase SeNP's stability while facilitating wide drug-loaded SeNP distribution to tumor areas and preventing off-target impacts need to focus on understanding more about the therapeutic aspects for better understanding the science behind it. Keeping that in mind we have focused on this gap and try to summarize all recent key targeted therapies for SeNPs in cancer treatment and the numerous functionalization strategies. We have also focused on recent advancements in SeNP functionalization methodologies and mechanisms for biomedical applications, particularly in anticancer, anti-inflammatory, and anti-infection therapeutics. Based on our observation we found that SeNPs could potentially be useful in suppressing viral epidemics, like the ongoing COVID-19 pandemic, in complement to their antibacterial and antiparasitic uses. SeNPs are significant nanoplatforms with numerous desirable properties for clinical translation.
Collapse
Affiliation(s)
- Jeba Ajgar Ansari
- Department of Pharmaceutics, Government College of Pharmacy, Dr. Babasaheb Ambedkar Marathwada University, (BAMU, Aurangabad), India
| | - Jonaid Ahmad Malik
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, India
| | - Sakeel Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Ahmedabad, Gujarat, India
| | - Muntaha Manzoor
- Department of Clinical Pharmacology, Sher - i - Kashmir Institute of Medical Sciences, Soura, Srinagar, India
| | - Nafees Ahemad
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, Petaling Jaya, Selangor, DE, 47500, Malaysia.
| | - Sirajudheen Anwar
- Department of Pharmacology & Toxicology, College of Pharmacy, University of Hail, Hail, Saudi Arabia.
| |
Collapse
|
6
|
Mohamed WA, El-Nekhily NA, Mahmoud HE, Hussein AA, Sabra SA. Prodigiosin/celecoxib-loaded into zein/sodium caseinate nanoparticles as a potential therapy for triple negative breast cancer. Sci Rep 2024; 14:181. [PMID: 38168547 PMCID: PMC10761898 DOI: 10.1038/s41598-023-50531-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024] Open
Abstract
Nowadays, breast cancer is considered one of the most upsetting malignancies among females. Encapsulation of celecoxib (CXB) and prodigiosin (PDG) into zein/sodium caseinate nanoparticles (NPs) produce homogenous and spherical nanoparticles with good encapsulation efficiencies (EE %) and bioavailability. In vitro cytotoxicity study conducted on human breast cancer MDA-MB-231 cell lines revealed that there was a significant decline in the IC50 for encapsulated drugs when compared to each drug alone or their free combination. In addition, results demonstrated that there is a synergism between CXB and PDG as their combination indices were 0.62251 and 0.15493, respectively. Moreover, results of scratch wound healing assay revealed enhanced antimigratory effect of free drugs and fabricated NPs in comparison to untreated cells. Furthermore, In vitro results manifested that formulated nanoparticles exhibited induction of apoptosis associated with reduced angiogenesis, proliferation, and inflammation. In conclusion, nanoencapsulation of multiple drugs into nanoparticles might be a promising approach to develop new therapies for the managing of triple negative breast cancer.
Collapse
Affiliation(s)
- Wafaa A Mohamed
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Nefertiti A El-Nekhily
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Hoda E Mahmoud
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Ahmed A Hussein
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Sally A Sabra
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt.
| |
Collapse
|
7
|
ALRashdi BM, Hussein MM, Mohammed RM, Abdelhamed NW, Asaad ME, Alruwaili M, Alrashidi SM, Habotta OA, Abdel Moneim AE, Ramadan SS. Turmeric Extract-loaded Selenium Nanoparticles Counter Doxorubicin-induced Hepatotoxicity in Mice via Repressing Oxidative Stress, Inflammatory Cytokines, and Cell Apoptosis. Anticancer Agents Med Chem 2024; 24:443-453. [PMID: 38204261 DOI: 10.2174/0118715206274530231213104519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Doxorubicin (DOX) is an antitumor anthracycline used to treat a variety of malignancies; however, its clinical use is associated with noticeable hepatotoxicity. Therefore, the current study was designed to delineate if biosynthesized SeNPs with turmeric extract (Tur-SeNPs) could alleviate DOX-induced hepatic adverse effects. METHODS Mice were orally post-treated with Tur extract, Tur-SeNPs, or N-acetyl cysteine after the intraperitoneal injection of DOX. RESULTS Our findings have unveiled a remarkable liver attenuating effect in DOX-injected mice post-treated with Tur-SeNPs. High serum levels of ALT, AST, ALP, and total bilirubin induced by DOX were significantly decreased by Tur-SeNPs therapy. Furthermore, Tur-SeNPs counteracted DOX-caused hepatic oxidative stress, indicated by decreased MDA and NO levels along with elevated levels of SOD, CAT, GPx, GR, GSH, and mRNA expression levels of Nrf-2. Noteworthily, decreased hepatic IL-1β, TNF-α, and NF-κB p65 levels in addition to downregulated iNOS gene expression in Tur-SeNPs-treated mice have indicated their potent antiinflammatory impact. Post-treatment with Tur-SeNPs also mitigated the hepatic apoptosis evoked by DOX injection. A liver histological examination confirmed the biochemical and molecular findings. CONCLUSIONS In brief, the outcomes have demonstrated Tur loaded with nanoselenium to successfully mitigate the liver damage induced by DOX via blocking oxidative stress, and inflammatory and apoptotic signaling.
Collapse
Affiliation(s)
- Barakat M ALRashdi
- Department of Biology, College of Science, Jouf University, Sakaka, 72388, Saudi Arabia
| | - Mohamed M Hussein
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rawan M Mohammed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Nada W Abdelhamed
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Maran E Asaad
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia
| | - Saad M Alrashidi
- Consultant Radiation Oncology, Comprehensive Cancer Centre, King Fahad Medical City & College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Shimaa S Ramadan
- Department of Chemistry, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
8
|
Zheng JY, Xu JY, Zhang L, Wang ZM, Yin XB, Qin LQ. Effect of 3,3'-diselenodipropionic Acid on Dextran Sodium Sulfate-Induced Ulcerative Colitis in Mice. Biol Trace Elem Res 2022:10.1007/s12011-022-03491-1. [PMID: 36418634 DOI: 10.1007/s12011-022-03491-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
3,3'-Diselenodipropionic acid (DSePA), a synthetic organoselenium compound, has received considerable attention because of its antioxidant properties and safety. Its protective effect against dextran sodium sulfate (DSS)-induced mouse ulcerative colitis (UC) and the role of T helper 17 (Th17) cell proliferation were investigated. Fifty C57BL/6 male mice were randomly assigned to one of five groups: control (Con), DSePA, DSS, low-dose DSePA (LSe), and high-dose DSePA (HSe). Mice in the DSS, LSe, and HSe groups drank 2% DSS to induce UC, and received normal saline, 1 and 2 mg/mL DSePA solution by intraperitoneal injection, respectively. The DSePA group only received 2 mg/mL DSePA solution. After 5 weeks, DSS challenge induced UC in the mice, which manifested as decreased body weight, shortened colon length, the loss of goblet cells, activated proliferating cells, and multiple signs of intestinal lesions by histological observation, all of which were reversed to varying degrees by DSePA administration. DSS upregulated the colonic protein expression of the macrophage marker F4/80 and proinflammatory cytokines (IL-1β, IL-6, and TNFα), whereas DSePA administration downregulated the expression of these factors. DSS upregulated the mRNA expression of retinoic acid receptor-related orphan receptor γt (RORγt, mainly expressed in Th17 cells), IL-17A, and IL-17F and the levels of IL-17A and IL-17F in the colon, whereas DSePA administration decreased them. No difference was observed between the Con group and the DSePA group without DSS induction. Thus, DSePA administration ameliorated DSS-induced UC by regulating Th17-cell proliferation and the secretion of proinflammatory cytokines.
Collapse
Affiliation(s)
- Jia-Yang Zheng
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Jia-Ying Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Lin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Zhang-Min Wang
- Advanced Lab for Functional Agriculture, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
- Nanjing Institute for Functional Agriculture Science and Technology (iFAST), Nanjing, China
| | - Xue-Bin Yin
- Advanced Lab for Functional Agriculture, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
- Nanjing Institute for Functional Agriculture Science and Technology (iFAST), Nanjing, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.
| |
Collapse
|
9
|
Budesonide-Loaded Hyaluronic Acid Nanoparticles for Targeted Delivery to the Inflamed Intestinal Mucosa in a Rodent Model of Colitis. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7776092. [PMID: 36203483 PMCID: PMC9532096 DOI: 10.1155/2022/7776092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 08/30/2022] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to investigate the therapeutic potential of budesonide- (BDS-) loaded hyaluronic acid nanoparticles (HANPs) for treatment of inflammatory bowel disease (IBD) using an acute model of colitis in rats. The therapeutic efficacy of BDS-loaded HANPs in comparison with an aqueous suspension of the drug with the same dose (30 μg/kg) was investigated 48 h following induction of colitis by intrarectal administration of acetic acid 4% in rats. Microscopic and histopathologic examinations were conducted in inflamed colonic tissue. Tissue concentration of tumor necrosis factor (TNF)-α was assessed by ELISA assay kit, while the activity of myeloperoxidase (MPO) was measured spectrophotometrically. Results from in vivo evaluations demonstrated that administrations of BDS-HANPs ameliorated the general endoscopic appearance, quite close to the healthy animals with no signs of inflammation and reduced the cellular infiltration, as well as the TNF-α level, and the MPO activity. It was found that delivery by BDS-loaded HANPSs alleviated the induced colitis significantly better than the same dose of the free drug. These data further suggest the potential of HANPs as a targeted drug delivery system to the inflamed colon mucosa.
Collapse
|