1
|
Qing B, Jiang Y, Wang Z, Li W, Li Y, Sun F, Pan S, Tian H, Duan M, Tang X, Mo Z. Exogenous metabolite application is a potential strategy for expanding the use of direct rice seeding with the aim of reducing seeding costs. Commun Biol 2024; 7:1096. [PMID: 39242665 PMCID: PMC11379971 DOI: 10.1038/s42003-024-06766-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 08/21/2024] [Indexed: 09/09/2024] Open
Abstract
Rice is a staple food for over half of the global population, necessitates efficient and cost-effective production methods to ensure food security. However, direct seeding of rice often encounters challenges due to adverse environmental conditions, resulting in increased seeding costs. In this study, we analyzed the germination and physiological data of sixty-six rice varieties under cold and submergence conditions. Our results demonstrate that selecting rice varieties with superior germination capacity in these adverse conditions can improve germination rates by 39.43%. Transcriptomic and metabolomic analyses of two contrasting varieties revealed potential regulatory mechanisms involving hormonal pathways and the glycerophospholipid metabolism pathway. Furthermore, we found that the exogenous application of specific metabolites provides a cost-effective seed enhancement strategy for varieties with poor germination capacity. These findings suggest that combining suitable variety selection with seed enhancement treatments can significantly reduce seeding costs in rice production. This research offers valuable insights for developing resilient rice varieties and cost-effective seeding strategies, potentially contributing to improved rice cultivation practices and enhanced global food security.
Collapse
Affiliation(s)
- Bowen Qing
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ye Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Zaiman Wang
- Key Laboratory of Key Technology for South Agricultural Machine and Equipment, Ministry of Education, College of Engineering, South China Agricultural University, Guangzhou, China
| | - Wu Li
- Guangdong province key laboratory of crop genetic improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yanhong Li
- Institute of Facility Agriculture, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Feiyang Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Shenggang Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Hua Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China.
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China.
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou, China.
| |
Collapse
|
2
|
Chen Z, Ma Y, Ren Y, Ma L, Tang X, Pan S, Duan M, Tian H, Mo Z. Multi-walled carbon nanotubes affect yield, antioxidant response, and rhizosphere microbial community of scented rice under combined cadmium-lead (Cd-Pb) stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108826. [PMID: 38908351 DOI: 10.1016/j.plaphy.2024.108826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 06/24/2024]
Abstract
Rice production is threatened by heavy metal stress. The use of multi-walled carbon nanotubes (MWCNTs) in agriculture has been reported in previous studies. We aimed to quantify the impact of MWCNTs on the growth and physiological characteristics of scented rice under cadmium (Cd) and lead (Pb) stresses. Therefore, a pot experiment was conducted, two scented rice varieties Yuxiangyouzhan and Xiangyaxiangzhan were used as materials grown under different concentrations of MWCNTs (0, 100, and 300 mg kg-1 recorded as CK, CNPs100, and CNPs300, respectively). The yield, antioxidant response, and rhizosphere microbial community of scented rice were studied. The results showed that compared with the CK treatment, the CNPs100 and CNPs300 treatments increased leaf dry weight by 17.95%-56.22% at the heading stage, and the H2O2 content in leaves decreased significantly by 36.64%-42.27% at the maturity stage. Under CNPs100 treatment, the grain yield of two scented rice varieties increased significantly by 17.54% and 27.40%, respectively. The MWCNTs regulated the distribution of the Cd and Pb in different plant tissues. The content of Cd (0.11-0.20 mg kg-1) and Pb (0.01-0.04 mg kg-1) in grain were at a safety level (<0.2 mg kg-1). Moreover, MWCNTs increased soil microbial community abundance and altered community composition structure under Cd-Pb stress, which in turn improved agronomic traits and quality of scented rice. Overall, this study suggested that the application of MWCNTs regulates the growth, yield, physiological response, and soil microbial community, the genotypes response effect of scented rice to MWCNTs is needed further studied.
Collapse
Affiliation(s)
- Zhilong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yixian Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Yong Ren
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology & Pharmacy of Yulin Normal University, Yulin, 537000, China
| | - Lin Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Shenggang Pan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Meiyang Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Hua Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China; Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China; Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Wang X, Ren Y, Ashraf U, Gui R, Deng H, Dai L, Tang X, Wang Z, Mo Z. Optimization of liquid fertilizer management improves grain yield, biomass accumulation, and nutrient uptake of late-season indica fragrant rice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6800-6813. [PMID: 37278411 DOI: 10.1002/jsfa.12767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/13/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
BACKGROUND The use of liquid fertilizer is an effective measure to increase rice yield and nitrogen use efficiency. There has been a lack of information regarding the effects on the grain yield, biomass accumulation, and nutrient uptake in late-season indica fragrant rice of split fertilizer application and of nitrogen management in liquid fertilizer application. RESULTS A 2-year field experiment was carried out during 2019 and 2020 with two fragrant rice cultivars grown under differing fertilizer management treatments. Results showed that the fertilization treatments affected the grain yield, yield components, biomass accumulation, and nutrient accumulation significantly. The mean nitrogen recovery efficiency with liquid fertilizer management was greater than in a control treatment corresponding to a practice commonly used by farmers (H2). The effects of nitrogen metabolism enzymes in the leaves of both rice cultivars were stronger with liquid fertilizer treatments than with H2. Grain yield was positively associated with the effective panicle number, spikelets per panicle, dry matter accumulation, N and K accumulation, and the nitrogen metabolism enzymes. CONCLUSIONS Optimized liquid fertilizer management increases biomass accumulation, nitrogen utilization efficiency, and nitrogen metabolism. It stabilizes yields and increases the economic benefits of late-season indica fragrant rice. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Yong Ren
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, People's Republic of China
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Runfei Gui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, China
| | - Huizi Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, China
| | - Lan Dai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, China
| | - Zaiman Wang
- Key Laboratory of Key Technology for South Agricultural Machine and Equipment, Ministry of Education, College of Engineering, South China Agricultural University, Guangzhou, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, China
| |
Collapse
|
4
|
Chen W, Liao G, Sun F, Ma Y, Chen Z, Chen H, Tang X, Mo Z. Foliar spray of La 2O 3 nanoparticles regulates the growth, antioxidant parameters, and nitrogen metabolism of fragrant rice seedlings in wet and dry nurseries. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:80349-80363. [PMID: 37296245 DOI: 10.1007/s11356-023-27892-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
Nanoparticles (NPs) have been widely used in agriculture, and lanthanum oxide nanoparticles (La2O3) NPs can regulate plant growth. La2O3 NPs treatment was hypothesized to affect the accumulation and distribution of substances in rice seedlings under wet and dry nursery conditions. The objective of the present study was to ascertain the effects of La2O3 NPs foliar spray on the morphology and physiology of fragrant rice seedlings under wet and dry nursery conditions. Seedlings of two fragrant rice cultivars, namely 'Xiangyaxiangzhan' and 'Yuxiangyouzhan,' were grown under wet and dry nursery conditions with La2O3 NPs treatments at three concentrations (CK, La2O3 NPs 0 mg L-1; T1, La2O3 NPs 20 mg L-1; and T2, La2O3 NPs 40 mg L-1). The results showed that the seedling-raising method was significantly associated with La2O3 NPs application (P < 0.05), affecting the leaf area of both cultivars. Changes in plant morphological parameters, such as dry weight and root-shoot ratio, were the reasons for the differences in cultivars in response to La2O3 NPs application. Changes were also observed in the plant morphological and physiological parameters of leaf area, specific leaf area, chlorophyll contents, antioxidant properties, and activities of nitrogen metabolism enzymes. The relationship between morphological and physiological processes in fragrant rice was investigated to test the hypothesis. In both wet and dry nursery methods, the T2 concentration of La2O3 NPs was beneficial for rice seedlings and significantly increased their leaf area due to changes in morphological and physiological parameters. Therefore, the results of this study provide a theoretical basis for expanding the research on La2O3 NPs application in rice, as well as relevant references for strengthening rice seedlings in the nursery, which has a positive effect on the grain yield improvement in fragrant rice.
Collapse
Affiliation(s)
- Weifen Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Gaoxin Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Feiyang Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Yixian Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Zhilong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Haoming Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China
| | - Zhaowen Mo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
- Guangzhou Key Laboratory for Science and Technology of Fragrant Rice, Guangzhou, 510642, China.
| |
Collapse
|