1
|
Amancio Frutuoso FK, P S G da Silva VE, C V Silva TF, P Vilar VJ, Bezerra Dos Santos A. Solids retention time (SRT) control in the co-treatment of leachate with domestic sewage in aerobic granular sludge systems: Impacts on system performance, operational stability, and bioresource production. BIORESOURCE TECHNOLOGY 2025; 415:131664. [PMID: 39424012 DOI: 10.1016/j.biortech.2024.131664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
This study investigates the co-treatment of leachate and domestic sewage in municipal wastewater treatment plants using aerobic granular sludge (AGS) systems, focusing on granule formation, system stability, and resource production in two units (R1 and R2). In R2, solids retention time (SRT) was controlled between 10 and 25 days, while R1 maintained approximately 9 days. The results show that low leachate proportions (5 %) did not affect system performance or stability. However, increasing the leachate to 10 % reduced the structural stability of extracellular polymeric substances (EPS), leading to a significant decrease in alginate-like exopolysaccharides (ALE) production in R1 (216 mgALE/gVSS) and R2 (125 mgALE/gVSS). Principal component analysis revealed that SRT was crucial for optimizing biopolymer synthesis. Furthermore, SRT control in R2 improved filamentous control, biomass retention, and total nitrogen removal. Thus, selective biomass discharge is essential for maintaining granule stability, enhancing treatment efficiency, and supporting resource production.
Collapse
Affiliation(s)
| | | | - Tânia Filomena C V Silva
- LSRE‑LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200‑465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200‑465 Porto, Portugal
| | - Vítor Jorge P Vilar
- LSRE‑LCM - Laboratory of Separation and Reaction Engineering - Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200‑465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200‑465 Porto, Portugal.
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
2
|
Sheng B, Liu S, Xiong K, Liu J, Zhu S, Zhang R. Microbial community dynamics in different floc size aggregates during nitrogen removal process upgrading in a full-scale landfill leachate treatment plant. BIORESOURCE TECHNOLOGY 2024; 413:131484. [PMID: 39277056 DOI: 10.1016/j.biortech.2024.131484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
Upgrading processes to reduce biodegradable organic substance addition is crucial for treating landfill leachate with high pollutant concentrations, aiding carbon emission reduction. Aggregate size in activated sludge processes impacts pollutant removal and sludge/water separation. This study investigated microbial community succession and driving mechanisms in different floc-size aggregates during nitrogen removal progress upgrade from conventional to partial nitrification-denitrification in a full-scale landfill leachate treatment plant (LLTP) using 16S rRNA gene sequencing. The upgrade and floc sizes significantly influenced microbial diversity and composition. After upgrading, ammonia-oxidizing bacteria were enriched while nitrite-oxidizing bacteria suppressed in small flocs with homogeneity and high mass transfer efficiency. Larger flocs enriched Defluviicoccus, Thauera, and Truepera, while smaller flocs enriched Nitrosomonas, suggesting their potential as biomarkers. Multi-network analyses revealed microbial interactions. A deep learning model with convolutional neural networks predicted nitrogen removal efficiency. These findings guide optimizing LLTP processes and understanding microbial community dynamics based on floc size.
Collapse
Affiliation(s)
- Binbin Sheng
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Shitong Liu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Kenan Xiong
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jiaming Liu
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Shuang Zhu
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Rongxin Zhang
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
3
|
Guo X, Ma X, Niu X, Li Z, Wang Q, Ma Y, Cai S, Li P, Li H. The impacts of biodegradable and non-biodegradable microplastic on the performance and microbial community characterization of aerobic granular sludge. Front Microbiol 2024; 15:1389046. [PMID: 38832118 PMCID: PMC11144868 DOI: 10.3389/fmicb.2024.1389046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/15/2024] [Indexed: 06/05/2024] Open
Abstract
Introduction Microplastics (MPs), identified as emerging contaminants, have been detected across diverse environmental media. Their enduring presence and small size facilitate the adsorption of organic pollutants and heavy metals, leading to combined pollution effects. MPs also accumulate in the food chain thus pose risks to animals, plants, and human health, garnering significant scholarly attention in recent years. Aerobic granular sludge (AGS) technology emerges as an innovative approach to wastewater treatment. However, the impacts of MPs on the operational efficiency and microbial characteristics of AGS systems has been insufficiently explored. Methods This study investigated the effects of varying concentration (10, 50, and 100 mg/L) of biodegradable MPs (Polylactic Acid, PLA) and non-biodegradable MPs (Polyethylene Terephthalate, PET) on the properties of AGS and explored the underlying mechanisms. Results and discussions It was discovered that low and medium concentration of MPs (10 and 50 mg/L) showed no significant effects on COD removal by AGS, but high concentration (100 mg/L) of MPs markedly diminished the ability to remove COD of AGS, by blocking most of the nutrient transport channels of AGS. However, both PLA and PE promoted the nitrogen and phosphorus removal ability of AGS, and significantly increased the removal efficiency of total inorganic nitrogen (TIN) and total phosphorus (TP) at stages II and III (P < 0.05). High concentration of MPs inhibited the growth of sludge. PET noticeably deteriorate the sedimentation performance of AGS, while 50 mg/L PLA proved to be beneficial to sludge sedimentation at stage II. The addition of MPs promoted the abundance of Candidatus_Competibacter and Acinetobacter in AGS, thereby promoting the phosphorus removal capacity of AGS. Both 50 mg/L PET and 100 mg/L PLA caused large amount of white Thiothrix filamentous bacteria forming on the surface of AGS, leading to deterioration of the sludge settling performance and affecting the normal operation of the reactor. Comparing with PET, AGS proved to be more resistant to PLA, so more attention should be paid to the effect of non-biodegradable MPs on AGS in the future.
Collapse
Affiliation(s)
- Xiaoying Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
- International Joint Laboratory of Environment and Resources of Henan Province, Zhengzhou, China
| | - Xiaohang Ma
- College of Water Resources and Environment Engineering, Nanyang Normal University, Nanyang, China
| | - Xiangyu Niu
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
- International Joint Laboratory of Environment and Resources of Henan Province, Zhengzhou, China
| | - Zhe Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
- International Joint Laboratory of Environment and Resources of Henan Province, Zhengzhou, China
| | - Qiong Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
- International Joint Laboratory of Environment and Resources of Henan Province, Zhengzhou, China
| | - Yi Ma
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
- International Joint Laboratory of Environment and Resources of Henan Province, Zhengzhou, China
| | - Shangying Cai
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
- International Joint Laboratory of Environment and Resources of Henan Province, Zhengzhou, China
| | - Penghao Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, China
- International Joint Laboratory of Environment and Resources of Henan Province, Zhengzhou, China
| | - Honglu Li
- Ecological Environment Monitoring and Scientific Research Center, Yellow River Basin Ecology and Environment Administration, Ministry of Ecology and Environment, Zhengzhou, China
| |
Collapse
|
4
|
Zhao Y, Zhang X, Jian Z, Gong Y, Meng X. Effect of landfill leachate on arsenic migration and transformation in shallow groundwater systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5032-5042. [PMID: 38148459 DOI: 10.1007/s11356-023-31629-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 12/16/2023] [Indexed: 12/28/2023]
Abstract
Arsenic contamination of groundwater has affected human health and environmental safety worldwide. Hundreds of millions of people in more than 100 countries around the world are directly or indirectly troubled by arsenic-contaminated groundwater. In addition, arsenic contamination of groundwater caused by leakage of leachate from municipal solid waste landfills has occurred in some countries and regions, which has attracted widespread attention. Understanding how domestic waste landfill leachate affects the arsenic's migration and transformation in shallow groundwater is crucial for accurate assessment of the distribution and ecological hazards of arsenic in groundwater. Based on literature review, this study systematically summarized and discussed the basic characteristics of landfill leachate, the mechanism of arsenic pollution in groundwater, and the effect of landfill leachate on the migration and transformation of arsenic in groundwater. Combined with relevant research findings and practical experience, countermeasures and suggestions to limit the impact of landfill leachate on the migration and transformation of arsenic in groundwater are put forward.
Collapse
Affiliation(s)
- Ying Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xinyi Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Zhiqiang Jian
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Yaping Gong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Xiaoguang Meng
- Center for Environmental Systems, Department of Civil, Environmental & Ocean Engineering, Stevens Institute of Technology, Hoboken, NJ, 07030, USA
| |
Collapse
|
5
|
Biohythane Production in Hydrogen-Oriented Dark Fermentation of Aerobic Granular Sludge (AGS) Pretreated with Solidified Carbon Dioxide (SCO 2). Int J Mol Sci 2023; 24:ijms24054442. [PMID: 36901872 PMCID: PMC10003144 DOI: 10.3390/ijms24054442] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Though deemed a prospective method, the bioconversion of organic waste to biohydrogen via dark fermentation (DF) has multiple drawbacks and limitations. Technological difficulties of hydrogen fermentation may, in part, be eliminated by making DF a viable method for biohythane production. Aerobic granular sludge (AGS) is a little-known organic waste spurring a growing interest in the municipal sector; its characteristics indicate the feasibility of its use as a substrate for biohydrogen production. The major goal of the present study was to determine the effect of AGS pretreatment with solidified carbon dioxide (SCO2) on the yield of H2 (biohythane) production during anaerobic digestion (AD). It was found that an increasing dose of SCO2 caused an increase in concentrations of COD, N-NH4+, and P-PO43- in the supernatant at the SCO2/AGS volume ratios from 0 to 0.3. The AGS pretreatment at SCO2/AGS ratios within the range of 0.1-0.3 was shown to enable the production of biogas with over 8% H2 (biohythane) content. The highest yield of biohythane production, reaching 481 ± 23 cm3/gVS, was obtained at the SCO2/AGS ratio of 0.3. This variant produced 79.0 ± 6% CH4 and 8.9 ± 2% H2. The higher SCO2 doses applied caused a significant decrease in the pH value of AGS, modifying the anaerobic bacterial community to the extent that diminished anaerobic digestion performance.
Collapse
|