1
|
Vastag G, Felhősi I, Vraneš M, Shaban A. Impact of N-decyl-nicotineamide bromide on copper corrosion inhibition in acidic sulfate containing environment: Electrochemical and piezoelectrochemical insights. Heliyon 2024; 10:e40184. [PMID: 39584099 PMCID: PMC11583692 DOI: 10.1016/j.heliyon.2024.e40184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/26/2024] Open
Abstract
This work investigates the inhibition effect and adsorption properties of a new tailor-made synthesized model molecule of ionic liquids, namely N-decyl nicotinamide bromide [C10Nic]Br in an acidic 0.1 M Na2SO4 solution (pH = 2.7) against the corrosion of copper. Electrochemical methods (ac electrochemical impedance spectroscopy and dc potentiodynamic polarization), and piezoelectric method (quartz crystal microbalance with impedance analysis (EQCM-I) were applied to study the corrosion protection performance of the inhibitor. Electrochemical measurements have indicated favorable corrosion inhibition performance of [C10Nic]Br. The corrosion inhibition efficiency increases with the increase of inhibitor concentration, at a [C10Nic]Br concentration of 10-3 M the efficiency reaches 93 %. The inhibitor adsorption slightly differed from the ideal Langmuir adsorption isotherm. [C10Nic]Br can be considered to be a mixed-type inhibitor. The inhibition efficiency was found to be time-dependent. In the presence of the highest 10-3 M inhibitor concentration the formation of the maximum protective effect of the inhibitor layer takes several hours, the maximum value of polarization resistance was 8.5 kΩ cm2 after 5 h. The copper dissolution and the inhibitor adsorption were also monitored by real-time changes in mass and viscoelasticity determined by QCM-I. It was obtained that the inhibitor adsorption on the copper surface leads to a decrease in copper dissolution and an increase in viscoelasticity. The layer on the copper surface becomes softer due to the complex between the inhibitor and the corrosion products on the surface.
Collapse
Affiliation(s)
- Gyöngyi Vastag
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Ilona Felhősi
- Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| | - Milan Vraneš
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg Dositeja Obradovića 3, 21000, Novi Sad, Serbia
| | - Abdul Shaban
- Research Centre for Natural Sciences, Magyar tudósok körútja 2, 1117, Budapest, Hungary
| |
Collapse
|
2
|
Xu J, Qiao H, Gan L, Wang P, Wang J, Cui Y, Zhou J, Liu Q, Jiang Y, Zhang H, Yang K. Zinc caproate: Ecofriendly synthesis, structural characterization, and antibacterial action. Int J Pharm 2024; 655:124030. [PMID: 38521376 DOI: 10.1016/j.ijpharm.2024.124030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/19/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Disease-causing microorganisms such as Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) are among the primary contributors to morbidity and mortality of diarrhea in humans. Considering the challenges associated with antibiotic use, including antimicrobial resistance, this study aimed to develop a novel zinc-based agent for bacterial inactivation. To this end, zinc caproate (ZnCA) was synthesized using caproic acid (CA) and zinc oxide (ZnO) in anhydrous ethanol via the solvothermal method. Structural characterization techniques, including Fourier-transform infrared spectroscopy, single crystal X-ray diffraction analysis, and nuclear magnetic resonance spectroscopy, revealed the bidentate bridging coordination of zinc atoms with CA. The resulting two-dimensional ZnCA network was found to be composed of a distinct lamellar pattern, without any evident inter-layer interactions. Powder X-ray diffraction analysis, elemental analysis, and melting point analysis confirmed that ZnCA had an average particle size of 1.320 µm, a melting point of 147.2 °C, and a purity exceeding 98 %. Remarkably, ZnCA demonstrated potent antibacterial activity against E. coli and S. aureus, which exceeded the antibacterial efficacy of ZnO. ZnCA exerted its antibacterial effects by inhibiting biofilm formation, disrupting cell membrane integrity, increasing cell membrane permeability, and altering intracellular Ca2+-Mg2+-ATPase activity. These findings highlight the potential of ZnCA as a promising antibiotic substitute for the treatment of diarrhea in humans.
Collapse
Affiliation(s)
- Jilong Xu
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou 450001, China.
| | - Hanzhen Qiao
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou 450001, China.
| | - Liping Gan
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou 450001, China
| | - Peng Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou 450001, China
| | - Jinrong Wang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou 450001, China.
| | - Yaoming Cui
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou 450001, China
| | - Jiale Zhou
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou 450001, China
| | - Qingyu Liu
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou 450001, China
| | - Yue Jiang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou 450001, China
| | - Huadong Zhang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou 450001, China
| | - Kunfan Yang
- College of Bioengineering, Henan University of Technology, Lianhua Street 100, Zhengzhou 450001, China
| |
Collapse
|
3
|
Tao MT, Liu SS, Ding TT, Gu ZW, Cheng RJ. Time-dependent nonmonotonic concentration-response and synergism of alkyl glycosides with different alkyl side chain to Vibrio qinghaiensis sp. -Q67. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171375. [PMID: 38431162 DOI: 10.1016/j.scitotenv.2024.171375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Alkyl glycosides (AGs), commonly used nonionic surfactants, may have toxic effects on the environmental organisms. However, the complex concentration-response patterns of AGs with varying alkyl side chains and their mixtures have not been thoroughly studied. Therefore, the luminescence inhibition toxicities of six AGs with different alkyl side chains, namely, ethyl (AG02), butyl (AG04), hexyl (AG06), octyl (AG08), decyl (AG10), and dodecyl (AG12) glucosides, were determined in Vibrio qinghaiensis sp. -Q67 (Q67) at 0.25, 3, 6, 9, and 12 h. The six AGs exhibited time- and side-chain-dependent nonmonotonic concentration- responses toward Q67. AG02, with a short side chain, presented a concentration-response curve (CRC) with two peaks after 6 h and stimulated the luminescence of Q67 at both 6 and 9 h. AG04, AG06, and AG08 showed S-shaped CRCs at five exposure time points, and their toxicities increased with the side-chain length. AG10 and AG12, with long side chains, exhibited hormesis at 9 and 12 h. Molecular docking was performed to explore the mechanism governing the possible influence of AGs on the luminescence response. The effects of AGs on Q67 could be attributed to multiple luminescence-regulatory proteins, including LuxA, LuxC, LuxD, LuxG, LuxI, and LuxR. Notably, LuxR was identified as the primary binding protein among the six AGs. Given that they may co-exist, binary mixtures of AG10 and AG12 were designed to explore their concentration-response patterns and interactions. The results revealed that all AG10-AG12 binary mixture rays showed time-dependent hormesis on Q67, similar to that shown by their individual components. The interactions of these binary mixtures were mainly characterized by low-concentration additive action and high-concentration synergism at different times.
Collapse
Affiliation(s)
- Meng-Ting Tao
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Shu-Shen Liu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Ting-Ting Ding
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhong-Wei Gu
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Ru-Jun Cheng
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| |
Collapse
|
4
|
Fait ME, Grillo PD, Garrote GL, Prieto ED, Vázquez RF, Saparrat MCN, Morcelle SR. Biocidal and antibiofilm activities of arginine-based surfactants against Candida isolates. Amino Acids 2023; 55:1083-1102. [PMID: 37382761 DOI: 10.1007/s00726-023-03296-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Amino-acid-based surfactants are a group of compounds that resemble natural amphiphiles and thus are expected to have a low impact on the environment, owing to either the mode of surfactant production or its means of disposal. Within this context, arginine-based tensioactives have gained particular interest, since their cationic nature-in combination with their amphiphilic character-enables them to act as broad-spectrum biocides. This capability is based mainly on their interactive affinity for the microbial envelope that alters the latter's structure and ultimately its function. In the work reported here, we investigated the efficiency of Nα-benzoyl arginine decyl- and dodecylamide against Candida spp. to further our understanding of the antifungal mechanism involved. For the assays, both a Candida albicans and a Candida tropicalis clinical isolates along with a C. albicans-collection strain were used as references. As expected, both arginine-based compounds proved to be effective against the strains tested through inhibiting both the planktonic and the sessile growth. Furthermore, atomic force microscopy techniques and lipid monolayer experiments enabled us to gain insight into the effect of the surfactant on the cellular envelope. The results demonstrated that all the yeasts treated exhibited changes in their exomorphologic structure, with respect to alterations in both roughness and stiffness, relative to the nontreated ones. This finding-in addition to the amphiphiles' proven ability to insert themselves within this model fungal membrane-could explain the changes in the yeast-membrane permeability that could be linked to viability loss and mixed-vesicle release.
Collapse
Affiliation(s)
- M Elisa Fait
- Centro de Investigación de Proteínas Vegetales (CIProVe-UNLP-Centro Asociado CICPBA), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Centro Asociado CICPBA, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| | - Patricia D Grillo
- Centro de Investigación de Proteínas Vegetales (CIProVe-UNLP-Centro Asociado CICPBA), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Centro Asociado CICPBA, Universidad Nacional de La Plata (UNLP), La Plata, Argentina
- Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Buenos Aires, Argentina
| | - Graciela L Garrote
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Centro de Investigación y Desarrollo en Criotecnología de Alimentos (CIDCA, CONICET-UNLP-CICPBA), La Plata, Argentina
| | - Eduardo D Prieto
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CONICET, UNLP, CCT-La Plata, La Plata, Argentina
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
- Instituto Ciencias de la Salud, Universidad Nacional Arturo Jauretche, Buenos Aires, Argentina
| | - Romina F Vázquez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CCT-La Plata, CONICET, UNLP, La Plata, Argentina
| | - Mario C N Saparrat
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Fisiología Vegetal (INFIVE-CONICET-UNLP) and Cátedra de Microbiología Agrícola, Facultad de Ciencias Agrarias y Forestales, UNLP, La Plata, Argentina
| | - Susana R Morcelle
- Centro de Investigación de Proteínas Vegetales (CIProVe-UNLP-Centro Asociado CICPBA), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Centro Asociado CICPBA, Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
| |
Collapse
|
5
|
Kondrashov EV, Belovezhets LA, Shatokhina NS, Shilova AN, Kostyro YA, Markova YA, Borovskaya MK, Borovskii GB. Design of novel water-soluble isoxazole-based antimicrobial agents and evaluation of their cytotoxicity and acute toxicity. Bioorg Chem 2023; 138:106644. [PMID: 37302315 DOI: 10.1016/j.bioorg.2023.106644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
Based on the readily available 3-organyl-5-(chloromethyl)isoxazoles, a number of previously unknown water-soluble conjugates of isoxazoles with thiourea, amino acids, some secondary and tertiary amines, and thioglycolic acid were synthesized. The bacteriostatic activity of aforementioned compounds has been studied against Enterococcus durans B-603, Bacillus subtilis B-407, Rhodococcus qingshengii Ac-2784D, and Escherichia coli B-1238 microorganisms (provided by All-Russian Collection of Microorganisms, VKM). The influence of the nature of the substituents in positions 3 and 5 of the isoxazole ring on the antimicrobial activity of the obtained compounds has been determined. It is found that the highest bacteriostatic effect is observed for compounds containing 4-methoxyphenyl or 5-nitrofuran-2-yl substituents in position 3 of the isoxazole ring as well as methylene group in position 5 bearing residues of l-proline or N-Ac-l-cysteine (5a-d, MIC 0.06-2.5 µg/ml). The leading compounds showed low cytotoxicity on normal human skin fibroblast cells (NAF1nor) and low acute toxicity on mice in comparison with the well-known isoxazole-containing antibiotic oxacillin.
Collapse
Affiliation(s)
- Evgeniy V Kondrashov
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia.
| | - Lyudmila A Belovezhets
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Nina S Shatokhina
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Alexandra N Shilova
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Yana A Kostyro
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences, 1 Favorsky St., 664033 Irkutsk, Russia
| | - Yulia A Markova
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Brunch of the Russian Academy of Sciences, Lermontova st., 132, Irkutsk 664033, Russia
| | - Marina K Borovskaya
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Brunch of the Russian Academy of Sciences, Lermontova st., 132, Irkutsk 664033, Russia
| | - Gennadii B Borovskii
- Siberian Institute of Plant Physiology and Biochemistry, Siberian Brunch of the Russian Academy of Sciences, Lermontova st., 132, Irkutsk 664033, Russia
| |
Collapse
|
6
|
Nowacka A, Olejniczak A, Stachowiak W, Niemczak M. Comprehensive Ecotoxicity Studies on Quaternary Ammonium Salts Synthesized from Vitamin B 3 Supported by QSAR Calculations. PLANTS (BASEL, SWITZERLAND) 2023; 12:914. [PMID: 36840262 PMCID: PMC9960687 DOI: 10.3390/plants12040914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/13/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Lately, ionic forms (namely, quaternary ammonium salts, QASs) of nicotinamide, widely known as vitamin B3, are gaining popularity in the sectors developing novel pharmaceuticals and agrochemicals. However, the direct influence of these unique QASs on the development of various terrestrial plants, as well as other organisms, remains unknown. Therefore, three compounds comprising short, medium, and long alkyl chains in N-alkylnicotinamide were selected for phytotoxicity analyses, which were conducted on representative dicotyledonous (white mustard) and monocotyledonous (sorghum) plants. The study allowed the determination of the impact of compounds on the germination capacity as well as on the development of roots and stems of the tested plants. Interestingly, independently of the length of the alkyl chain or plant species, all QASs were established as non-phytotoxic. In addition, QSAR simulations, performed using the EPI Suite™ program pack, allowed the determination of the products' potential toxicity toward fish, green algae, and daphnids along with the susceptibility to biodegradation. The obtained nicotinamide derivative with the shortest chain (butyl) can be considered practically non-toxic according to GHS criteria, whereas salts with medium (decyl) and longest (hexadecyl) substituent were included in the 'acute II' toxicity class. These findings were supported by the results of the toxicity tests performed on the model aquatic plant Lemna minor. It should be stressed that all synthesized salts exhibit not only a lack of potential for bioaccumulation but also lower toxicity than their fully synthetic analogs.
Collapse
Affiliation(s)
| | | | | | - Michał Niemczak
- Faculty of Chemical Technology, Poznan University of Technology, 60-965 Poznan, Poland
| |
Collapse
|