1
|
Maier C, Egger L, Köck A, Reichmann K. A Review of Gas Sensors for CO 2 Based on Copper Oxides and Their Derivatives. SENSORS (BASEL, SWITZERLAND) 2024; 24:5469. [PMID: 39275379 PMCID: PMC11487424 DOI: 10.3390/s24175469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 09/16/2024]
Abstract
Buildings worldwide are becoming more thermally insulated, and air circulation is being reduced to a minimum. As a result, measuring indoor air quality is important to prevent harmful concentrations of various gases that can lead to safety risks and health problems. To measure such gases, it is necessary to produce low-cost and low-power-consuming sensors. Researchers have been focusing on semiconducting metal oxide (SMOx) gas sensors that can be combined with intelligent technologies such as smart homes, smart phones or smart watches to enable gas sensing anywhere and at any time. As a type of SMOx, p-type gas sensors are promising candidates and have attracted more interest in recent years due to their excellent electrical properties and stability. This review paper gives a short overview of the main development of sensors based on copper oxides and their composites, highlighting their potential for detecting CO2 and the factors influencing their performance.
Collapse
Affiliation(s)
- Christian Maier
- Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben, Austria; (L.E.); (A.K.)
- Institute for Chemistry and Technology of Materials, TU Graz, Stremayrgasse 9, 8010 Graz, Austria;
| | - Larissa Egger
- Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben, Austria; (L.E.); (A.K.)
| | - Anton Köck
- Materials Center Leoben Forschung GmbH, Roseggerstrasse 12, 8700 Leoben, Austria; (L.E.); (A.K.)
| | - Klaus Reichmann
- Institute for Chemistry and Technology of Materials, TU Graz, Stremayrgasse 9, 8010 Graz, Austria;
| |
Collapse
|
2
|
Sundaresan R, Mariyappan V, Chen SM, Ramachandran B, Paulsamy R, Rasu R. Construction of an electrochemical sensor towards environmental hazardous 4-nitrophenol based on Nd(OH) 3-embedded VSe 2 nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46470-46483. [PMID: 36781666 DOI: 10.1007/s11356-023-25688-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The toxicity of 4-nitrophenol (4-NP) is one of the most common threats to the environment; therefore, developing a simple and sensitive analytical method to detect 4-NP is crucial. In this study, we prepared the Nd(OH)3/VSe2 nanocomposite using the simple hydrothermally assisted ultrasonication method and it was used to detect the 4-NP. Different characterization techniques were used to investigate the morphological and chemical compositions of Nd(OH)3/VSe2 nanocomposite. All of these investigations revealed that Nd(OH)3 nanoparticles were finely dispersed on the surface of the VSe2 nanosheet. The electrical conductivity of our prepared samples was evaluated by the electrochemical impedance spectroscopic technique. The CV and DPV methods were used to explore the electrochemical activity of 4-NP at the Nd(OH)3/VSe2/GCE sensor which exhibited a wide linear range (0.001 to 640 µM), low limit of detection (0.008 µM), and good sensitivity (0.41 µA µM-1 cm-2), respectively. Additionally, Nd(OH)3/VSe2/GCE sensor was tested in water samples for the detection of 4-NP, which exhibited good recovery results. The Nd(OH)3/VSe2 electrode material is a novel one for the electrochemical sensor field, and the obtained overall results also proved that our proposed material is an active material for sensor applications.
Collapse
Affiliation(s)
- Ruspika Sundaresan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Vinitha Mariyappan
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - Balaji Ramachandran
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Raja Paulsamy
- Department of Chemistry, Vivekananda College of Arts and Science, Agastheeswaram, Kanyakumari, 629 004, Tamil Nadu, India
| | - Ramachandran Rasu
- Department of Chemistry, The Madura College, Tamil Nadu, Vidya Nagar, Madurai, 625 011, India
| |
Collapse
|
3
|
Wei Z, Qin C, Yang X, Zhu L, Zhao X, Cao J, Wang Y. Surface modification of Co 3O 4 nanosheets through Cd-doping for enhanced CO sensing performance. Mikrochim Acta 2024; 191:234. [PMID: 38568389 DOI: 10.1007/s00604-024-06326-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/23/2024] [Indexed: 05/12/2024]
Abstract
The detection of hazardous CO gas is an important research content in the domain of the Internet of Things (IoT). Herein, we introduced a facile metal-organic frameworks (MOFs)-templated strategy to synthesize Cd-doped Co3O4 nanosheets (Cd-Co3O4 NSs) aimed at boosting the CO-sensing performance. The synthesized Cd-Co3O4 NSs feature a multihole nanomeshes structure and a large specific surface area (106.579 m2·g-1), which endows the sensing materials with favorable gas diffusion and interaction ability. Furthermore, compared with unadulterated Co3O4, the 2 mol % Cd-doped Co3O4 (2% Cd-Co3O4) sensor exhibits enhanced sensitivity (244%) to 100 ppm CO at 200 °C and a comparatively low experimental limit of detection (0.5 ppm/experimental value). The 2% Cd-Co3O4 NSs show good selectivity, reproducibility, and long-term stability. The improved CO sensitivity signal is probably owing to the stable nanomeshes construction, high surface area, and rich oxygen vacancies caused by cadmium doping. This study presents a facile avenue to promote the sensing performance of p-type metal oxide semiconductors by enhancing the surface activity of Co3O4 combined with morphology control and component regulation.
Collapse
Affiliation(s)
- Zhanxiang Wei
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Cong Qin
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
| | - Xuhui Yang
- President's Office, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Linghao Zhu
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Xiaoyan Zhao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Jianliang Cao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Yan Wang
- College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, China.
- State Collaborative Innovation Center of Coal Work Safety and Clean-efficiency Utilization, Henan Polytechnic University, Jiaozuo, 454000, China.
| |
Collapse
|
4
|
Zhang R, Deng Z, Li M, Cao K, Chang J, Rong D, Wang S, Huang S, Meng G. Delafossite CuGaO 2-Based Chemiresistive Sensor for Sensitive and Selective Detection of Dimethyl Disulfide. ACS Sens 2024; 9:1410-1418. [PMID: 38456391 DOI: 10.1021/acssensors.3c02481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Dimethyl disulfide (DMDS) is a common odor pollutant with an extremely low olfactory threshold. Highly sensitive and selective detection of DMDS in ambient humid air background, by metal oxide semiconductor (MOS) sensors, is highly desirable to address the increased public concern for health risk. However, it has still been a critical challenge up to now. Herein, p-type delafossite CuGaO2 has been proposed as a promising DMDS sensing material owing to its striking hydrophobicity (revealed by water contact angle measurement) and excellent partial catalytic oxidation properties (indicated by mass spectroscopy). The present CuGaO2 sensor shows a selective DMDS response, with satisfied humidity resistance performance and long-term stability at a relatively low operation temperature of 140 °C. An ultrahigh response of 100 to 10 ppm DMDS and a low limit of detection of 3.3 ppb could be achieved via a pulsed temperature modulation strategy. A smart sensing system based on a CuGaO2 sensor has been developed, which could precisely monitor DMDS vapor in ambient humid air, even with the presence of multiple interfering gases, demonstrating the practical application capability of MOS sensors for environmental odor monitoring.
Collapse
Affiliation(s)
- Ruofan Zhang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Zanhong Deng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
- Wan Jiang New Industry Technology Development Center, Tongling 244000, China
| | - Meng Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Kaifa Cao
- Anhui Kechuang Zhongguang Technology Co., Ltd., Hefei 230000, China
| | - Junqing Chang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Dandan Rong
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Shimao Wang
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| | - Shuhua Huang
- Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Gang Meng
- Anhui Provincial Key Laboratory of Photonic Devices and Materials, Anhui Institute of Optics and Fine Mechanics, and Key Lab of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Advanced Laser Technology Laboratory of Anhui Province, Hefei 230037, China
| |
Collapse
|
5
|
Khorramifar A, Karami H, Lvova L, Kolouri A, Łazuka E, Piłat-Rożek M, Łagód G, Ramos J, Lozano J, Kaveh M, Darvishi Y. Environmental Engineering Applications of Electronic Nose Systems Based on MOX Gas Sensors. SENSORS (BASEL, SWITZERLAND) 2023; 23:5716. [PMID: 37420880 PMCID: PMC10300923 DOI: 10.3390/s23125716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/05/2023] [Accepted: 06/12/2023] [Indexed: 07/09/2023]
Abstract
Nowadays, the electronic nose (e-nose) has gained a huge amount of attention due to its ability to detect and differentiate mixtures of various gases and odors using a limited number of sensors. Its applications in the environmental fields include analysis of the parameters for environmental control, process control, and confirming the efficiency of the odor-control systems. The e-nose has been developed by mimicking the olfactory system of mammals. This paper investigates e-noses and their sensors for the detection of environmental contaminants. Among different types of gas chemical sensors, metal oxide semiconductor sensors (MOXs) can be used for the detection of volatile compounds in air at ppm and sub-ppm levels. In this regard, the advantages and disadvantages of MOX sensors and the solutions to solve the problems arising upon these sensors' applications are addressed, and the research works in the field of environmental contamination monitoring are overviewed. These studies have revealed the suitability of e-noses for most of the reported applications, especially when the tools were specifically developed for that application, e.g., in the facilities of water and wastewater management systems. As a general rule, the literature review discusses the aspects related to various applications as well as the development of effective solutions. However, the main limitation in the expansion of the use of e-noses as an environmental monitoring tool is their complexity and lack of specific standards, which can be corrected through appropriate data processing methods applications.
Collapse
Affiliation(s)
- Ali Khorramifar
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199, Iran; (A.K.); (A.K.)
| | - Hamed Karami
- Department of Petroleum Engineering, Knowledge University, Erbil 44001, Iraq;
| | - Larisa Lvova
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Alireza Kolouri
- Department of Biosystems Engineering, University of Mohaghegh Ardabili, Ardabil 56199, Iran; (A.K.); (A.K.)
| | - Ewa Łazuka
- Department of Applied Mathematics, Faculty of Technology Fundamentals, Lublin University of Technology, 20-618 Lublin, Poland; (E.Ł.); (M.P.-R.)
| | - Magdalena Piłat-Rożek
- Department of Applied Mathematics, Faculty of Technology Fundamentals, Lublin University of Technology, 20-618 Lublin, Poland; (E.Ł.); (M.P.-R.)
| | - Grzegorz Łagód
- Department of Water Supply and Wastewater Disposal, Faculty of Environmental Engineering, Lublin University of Technology, 20-618 Lublin, Poland;
| | - Jose Ramos
- College of Computing and Engineering, Nova Southeastern University (NSU), 3301 College Avenue, Fort Lauderdale, FL 33314-7796, USA;
| | - Jesús Lozano
- Department of Electric Technology, Electronics and Automation, University of Extremadura, Avda. De Elvas S/n, 06006 Badajoz, Spain;
| | - Mohammad Kaveh
- Department of Petroleum Engineering, Knowledge University, Erbil 44001, Iraq;
| | - Yousef Darvishi
- Department of Biosystems Engineering, University of Tehran, Tehran P.O. Box 113654117, Iran;
| |
Collapse
|