1
|
Yang L, Liu X, Yang J, Wang K, Ai Z, Shang J, Zhou M. Biomimetic delivery of emodin via macrophage membrane-coated UiO-66-NH 2 nanoparticles for acute pancreatitis treatment. Biochem Biophys Res Commun 2024; 702:149649. [PMID: 38341924 DOI: 10.1016/j.bbrc.2024.149649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Acute pancreatitis (AP) is a severe inflammatory condition with a rising incidence and high mortality rates, especially in severe cases. Emodin (ED), known for its potent anti-inflammatory properties, holds promise in addressing AP. However, its clinical application is hindered by limitations such as low bioavailability and insufficient target specificity. Herein, we developed a novel drug delivery system using macrophage membrane-coated UiO-66-NH2 nanoparticles loaded with ED (MVs-UiO-ED). UiO-66-NH2 was successfully synthesized and characterized, revealing an octahedral structure with a suitable size distribution. The successful loading of ED onto UiO-66-NH2 was confirmed by ultraviolet and infrared spectroscopy. Subsequently, MVs-UiO-ED was prepared by coating macrophage membrane-derived vesicles onto UiO-ED, resulting in a biomimetic delivery system. In vitro release studies demonstrated that MVs-UiO-ED exhibited a sustained-release profile, indicating its potential for prolonged drug circulation. An AP mouse model was established to evaluate the therapeutic efficacy of MVs-UiO-ED. Compared with the model group, MVs-UiO-ED significantly reduced serum levels of α-amylase and lipase, two indicators of pancreatitis severity. Furthermore, histopathological examinations revealed that MVs-UiO-ED ameliorated pancreatic tissue damage. This study underscores the potential of MVs-UiO-ED as an effective therapeutic approach for AP.
Collapse
Affiliation(s)
- Liuxuan Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xianbin Liu
- Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, 621000, China
| | - Jing Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Ke Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Zhenghao Ai
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jinlu Shang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
2
|
Chen Z, Li Y, Cai Y, Wang S, Hu B, Li B, Ding X, Zhuang L, Wang X. Application of covalent organic frameworks and metal–organic frameworks nanomaterials in organic/inorganic pollutants removal from solutions through sorption-catalysis strategies. CARBON RESEARCH 2023; 2:8. [DOI: doi.org/10.1007/s44246-023-00041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/25/2023] [Accepted: 01/28/2023] [Indexed: 06/25/2023]
Abstract
AbstractWith the fast development of agriculture, industrialization and urbanization, large amounts of different (in)organic pollutants are inevitably discharged into the ecosystems. The efficient decontamination of the (in)organic contaminants is crucial to human health and ecosystem pollution remediation. Covalent organic frameworks (COFs) and metal–organic frameworks (MOFs) have attracted multidisciplinary research interests because of their outstanding physicochemical properties like high stability, large surface areas, high sorption capacity or catalytic activity. In this review, we summarized the recent works about the elimination/extraction of organic pollutants, heavy metal ions, and radionuclides by MOFs and COFs nanomaterials through the sorption-catalytic degradation for organic chemicals and sorption-catalytic reduction-precipitation-extraction for metals or radionuclides. The interactions between the (in)organic pollutants and COFs/MOFs nanomaterials at the molecular level were discussed from the density functional theory calculation and spectroscopy analysis. The sorption of organic chemicals was mainly dominated by electrostatic attraction, π-π interaction, surface complexation and H-bonding interaction, whereas the sorption of radionuclides and metal ions was mainly attributed to surface complexation, ion exchange, reduction and incorporation reactions. The porous structures, surface functional groups, and active sites were important for the sorption ability and selectivity. The doping or co-doping of metal/nonmetal, or the incorporation with other materials could change the visible light harvest and the generation/separation of electrons/holes (e−/h+) pairs, thereby enhanced the photocatalytic activity. The challenges for the possible application of COFs/MOFs nanomaterials in the elimination of pollutants from water were described in the end.
Collapse
|