1
|
Pei XD, Jiao DQ, Li F, Fang YH, Zhou ZQ, Liu XL, Wang CH. Targeted Adherence and Enhanced Degradation of Feather Keratins by a Novel Prepeptidase C-Terminal Domain-Fused Keratinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1182-1192. [PMID: 39749820 DOI: 10.1021/acs.jafc.4c09667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Keratinases are valuable enzymes for converting feather keratin waste into bioactive products but often suffer from poor substrate specificity and low catalytic efficiency. This study reported the creating of a novel keratinase with targeted adherence and specific degradation on feather keratins by fusing prepeptidase C-Terminal (PPC) domain. A PPC domain of metalloprotease E423 specifically adsorbed feather keratins by hydrogen bonds and hydrophobic interactions in a time- and temperature-dependent manner. Stepwise N-/C-terminal truncations disclosed the essential core sequence composed of 21 amino acid residues determining the keratin-targeted adherence. Fusion of the core fragment with a flexible linker (GGGGS)1 achieved the optimal secretion, and improved the catalytic efficiency of a representative keratinase 4-3Ker-MAV by 0.97-fold. Moreover, the feather degradation rate increased from 65 to 82%, representing the highest reported performance for a keratinase. This PPC-fusion strategy opens new horizons in enzyme engineering, promising not only to revolutionize keratin waste valorization but also to inspire the design of substrate-specific biocatalysts across diverse industrial applications.
Collapse
Affiliation(s)
- Xiao-Dong Pei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, People's Republic of China
| | - Dao-Quan Jiao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Fan Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Yu-Hui Fang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Zhi-Qiang Zhou
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Xiao-Ling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Cheng-Hua Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
- Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, People's Republic of China
- Institute of Modern Fermentation Engineering and Future Foods, Guangxi University, Nanning 530004, People's Republic of China
| |
Collapse
|
2
|
Das S, Das A, Das N, Nath T, Langthasa M, Pandey P, Kumar V, Choure K, Kumar S, Pandey P. Harnessing the potential of microbial keratinases for bioconversion of keratin waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57478-57507. [PMID: 38985428 DOI: 10.1007/s11356-024-34233-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/30/2024] [Indexed: 07/11/2024]
Abstract
The increasing global consumption of poultry meat has led to the generation of a vast quantity of feather keratin waste daily, posing significant environmental challenges due to improper disposal methods. A growing focus is on utilizing keratinous polymeric waste, amounting to millions of tons annually. Keratins are biochemically rigid, fibrous, recalcitrant, physiologically insoluble, and resistant to most common proteolytic enzymes. Microbial biodegradation of feather keratin provides a viable solution for augmenting feather waste's nutritional value while mitigating environmental contamination. This approach offers an alternative to traditional physical and chemical treatments. This review focuses on the recent findings and work trends in the field of keratin degradation by microorganisms (bacteria, actinomycetes, and fungi) via keratinolytic and proteolytic enzymes, as well as the limitations and challenges encountered due to the low thermal stability of keratinase, and degradation in the complex environmental conditions. Therefore, recent biotechnological interventions such as designing novel keratinase with high keratinolytic activity, thermostability, and binding affinity have been elaborated here. Enhancing protein structural rigidity through critical engineering approaches, such as rational design, has shown promise in improving the thermal stability of proteins. Concurrently, metagenomic annotation offers insights into the genetic foundations of keratin breakdown, primarily predicting metabolic potential and identifying probable keratinases. This may extend the understanding of microbial keratinolytic mechanisms in a complex community, recognizing the significance of synergistic interactions, which could be further utilized in optimizing industrial keratin degradation processes.
Collapse
Affiliation(s)
- Sandeep Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Ankita Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Nandita Das
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | - Tamanna Nath
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India
| | | | - Prisha Pandey
- Department of Biotechnology, Royal Global University, Guwahati, 781035, Assam, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Dehradun, India, 248016
| | - Kamlesh Choure
- Department of Biotechnology, AKS University, Satna, 485001, Madhya Pradesh, India
| | - Sanjeev Kumar
- Department of Life Sciences and Bioinformatics, Assam University, Silchar, 788011, Assam, India
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, 788011, Assam, India.
| |
Collapse
|
3
|
Kumari P, Abhinand CS, Kumari R, Upadhyay A, Satheeshkumar PK. Design, development and characterization of a chimeric protein with disulfide reductase and protease domain showing keratinase activity. Int J Biol Macromol 2024; 278:135025. [PMID: 39187103 DOI: 10.1016/j.ijbiomac.2024.135025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Keratin is one of the major components of solid waste, and the degradation products have extensive applications in various commercial industries. Due to the complexity of the structure of keratin, especially the disulfide bonds between keratin polypeptides, keratinolytic activity is efficient with a mixture of proteins with proteases, peptidases, and oxidoreductase activity. The present work aimed to create an engineered chimeric protein with a disulfide reductase domain and a protease domain connected with a flexible linker. The structure, stability, and substrate interaction were analyzed using the protein modeling tools and codon-optimized synthetic gene cloned, expressed, and purified using Ni2+-NTA chromatography. The keratinolytic activity of the protein was at its maximum at 70 °C. The suitable pH for the enzyme activity was pH 8. While Ni2+, Mg2+, and Na+ inhibited the keratinolytic activity, Cu2+, Ca2+, and Mn2+ enhanced it significantly. Biochemical characterization of the protease domain indicated significant keratinolytic activity at 70 °C at pH 10.0 but was less efficient than the chimeric protein. Experiments using feathers as the substrate showed a clear degradation pattern in the SEM analysis. The samples collected from the degradation experiments indicated the release of proteins (2-fold) and amino acids (8.4-fold) in a time-dependent manner. Thus, the protease with an added disulfide reductase domain showed excellent keratin degradation activity and has the potential to be utilized in the commercial industries.
Collapse
Affiliation(s)
- Preeti Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Chandran S Abhinand
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Center, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Ritu Kumari
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Astha Upadhyay
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Padikara K Satheeshkumar
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
4
|
Kessler E. The Secreted Aminopeptidase of Pseudomonas aeruginosa (PaAP). Int J Mol Sci 2024; 25:8444. [PMID: 39126017 PMCID: PMC11313473 DOI: 10.3390/ijms25158444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes severe infections in compromised hosts. P. aeruginosa infections are difficult to treat because of the inherent ability of the bacteria to develop antibiotic resistance, secrete a variety of virulence factors, and form biofilms. The secreted aminopeptidase (PaAP) is an emerging virulence factor, key in providing essential low molecular weight nutrients and a cardinal modulator of biofilm development. PaAP is therefore a new potential target for therapy of P. aeruginosa infections. The present review summarizes the current knowledge of PaAP, with special emphasis on its biochemical and enzymatic properties, activation mechanism, biological roles, regulation, and structure. Recently developed specific inhibitors and their potential as adjuncts in the treatment of P. aeruginosa infections are also described.
Collapse
Affiliation(s)
- Efrat Kessler
- Maurice and Gabriela Goldschleger Eye Research Institute, Faculty of Medicine and Health Sciences, Sheba Medical Center, Tel Aviv University, Ramat-Gan 5262000, Israel
| |
Collapse
|
5
|
Yan M, Chen Y, Feng Y, Saeed M, Fang Z, Zhen W, Ni Z, Chen H. Perspective on Agricultural Industrialization: Modification Strategies for Enhancing the Catalytic Capacity of Keratinase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38832583 DOI: 10.1021/acs.jafc.4c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Keratinases is a special hydrolytic enzyme produced by microorganisms, which has the ability to catalyze the degradation of keratin. Currently, keratinases show great potential for application in many agricultural and industrial fields, such as biofermented feed, leather tanning, hair removal, and fertilizer production. However, these potentials have not yet been fully unleashed on an industrial scale. This paper reviews the sources, properties, and catalytic mechanisms of keratinases. Strategies for the molecular modification of keratinases are summarized and discussed in terms of improving the substrate specificity, thermostability, and pH tolerance of keratinases. The modification strategies are also enriched by the introduction of immobilized enzymes and directed evolution. In addition, the selection of modification strategies when facing specific industrial applications is discussed and prospects are provided. We believe that this review serves as a reference for the future quest to extend the application of keratinases from the laboratory to industry.
Collapse
Affiliation(s)
- Mingchen Yan
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Ying Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Yong Feng
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Muhammad Saeed
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Zhen Fang
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212000, China
| | - Wang Zhen
- Biofuels Institute, School of the Environment, Jiangsu University, Zhenjiang 212000, China
| | - Zhong Ni
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| | - Huayou Chen
- School of the Life Sciences, Jiangsu University, Zhenjiang 212000, China
| |
Collapse
|
6
|
Saeed M, Yan M, Ni Z, Hussain N, Chen H. Molecular strategies to enhance the keratinase gene expression and its potential implications in poultry feed industry. Poult Sci 2024; 103:103606. [PMID: 38479096 PMCID: PMC10951097 DOI: 10.1016/j.psj.2024.103606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/18/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The tons of keratin waste are produced by the poultry and meat industry which is an insoluble and protein-rich material found in hair, feathers, wool, and some epidermal wastes. These waste products could be degraded and recycled to recover protein, which can save our environment. One of the potential strategy to achieve this target is use of microbial biotreatment which is more convenient, cost-effective, and environment-friendly by formulating hydrolysate complexes that could be administered as protein supplements, bioactive peptides, or animal feed ingredients. Keratin degradation shows great promise for long-term protein and amino acid recycling. According to the MEROPS database, known keratinolytic enzymes currently belong to at least 14 different protease families, including S1, S8, S9, S10, S16, M3, M4, M14, M16, M28, M32, M36, M38, and M55. In addition to exogenous attack (proteases from families S9, S10, M14, M28, M38, and M55), the various keratinolytic enzymes also function via endo-attack (proteases from families S1, S8, S16, M4, M16, and M36). Biotechnological methods have shown great promise for enhancing keratinase expression in different strains of microbes and different protein engineering techniques in genetically modified microbes such as bacteria and some fungi to enhance keratinase production and activity. Some microbes produce specific keratinolytic enzymes that can effectively degrade keratin substrates. Keratinases have been successfully used in the leather, textile, and pharmaceutical industries. However, the production and efficiency of existing enzymes need to be optimized before they can be used more widely in other processes, such as the cost-effective pretreatment of chicken waste. These can be improved more effectively by using various biotechnological applications which could serve as the best and novel approach for recycling and degrading biomass. This paper provides practical insights about molecular strategies to enhance keratinase expression to effectively utilize various poultry wastes like feathers and feed ingredients like soybean pulp. Furthermore, it describes the future implications of engineered keratinases for environment friendly utilization of wastes and crop byproducts for their better use in the poultry feed industry.
Collapse
Affiliation(s)
- Muhammad Saeed
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Mingchen Yan
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Nazar Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
7
|
Pei XD, Fan HL, Jiao DQ, Li F, He YN, Wu QL, Liu XL, Wang CH. Rational engineering S1' substrate binding pocket to enhance substrate specificity and catalytic activity of thermal-stable keratinase for efficient keratin degradation. Int J Biol Macromol 2024; 263:130688. [PMID: 38458294 DOI: 10.1016/j.ijbiomac.2024.130688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/24/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
This study reports the rational engineering of the S1' substrate-binding pocket of a thermally-stable keratinase from Pseudomonas aeruginosa 4-3 (4-3Ker) to improve substrate specificity to typical keratinase (K/C > 0.5) and catalytic activity without compromising thermal stability for efficient keratin degradation. Of 10 chosen mutation hotspots in the S1' substrate-binding pocket, the top three mutations M128R, A138V, and V142I showing the best catalytic activity and substrate specificity were identified. Their double and triple combinatorial mutants synergistically overcame limitations of single mutants, fabricating an excellent M128R/A138V/V142I triple mutant which displayed a 1.21-fold increase in keratin catalytic activity, 1.10-fold enhancement in keratin/casein activity ratio, and a 3.13 °C increase in half-inactivation temperature compared to 4-3Ker. Molecular dynamics simulations revealed enhanced flexibility of critical amino acid residues at the substrate access tunnel, improved global protein rigidity, and heightened hydrophobicity within the active site likely underpinned the increased catalytic activity and substrate specificity. Additionally, the triple mutant improved the feather degradation rate by 32.86 % over the wild-type, far exceeding commercial keratinase in substrate specificity and thermal stability. This study exemplified engineering a typical keratinase with enhanced substrate specificity, catalytic activity, and thermal stability from thermally-stable 4-3Ker, providing a more robust tool for feather degradation.
Collapse
Affiliation(s)
- Xiao-Dong Pei
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, People's Republic of China
| | - He-Liang Fan
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China; Guangxi College and University Key Laboratory of High-value Utilization of Seafood and Prepared Food in Beibu Gulf, Qinzhou 535011, People's Republic of China
| | - Dao-Quan Jiao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Fan Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Yi-Ning He
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Qing-Ling Wu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Xiao-Ling Liu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China
| | - Cheng-Hua Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, People's Republic of China; Key Laboratory of Deep Processing and Safety Control for Specialty Agricultural Products in Guangxi Universities, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, People's Republic of China.
| |
Collapse
|
8
|
Revankar AG, Bagewadi ZK, Bochageri NP, Yunus Khan T, Mohamed Shamsudeen S. Response surface methodology based optimization of keratinase from Bacillus velezensis strain ZBE1 and nanoparticle synthesis, biological and molecular characterization. Saudi J Biol Sci 2023; 30:103787. [PMID: 37705700 PMCID: PMC10495650 DOI: 10.1016/j.sjbs.2023.103787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023] Open
Abstract
The increasing demands of keratinases for biodegradation of recalcitrant keratinaceous waste like chicken feathers has lead to research on newer potential bacterial keratinases to produce high-value products with biological activities. The present study reports a novel keratinolytic bacterium Bacillus velezensis strain ZBE1 isolated from deep forest soil of Western Ghats of Karnataka, which possessed efficient feather keratin degradation capability and induced keratinase production. Production kinetics depicts maximum keratinase production (11.65 U/mL) on 4th day with protein concentration of 0.61 mg/mL. Effect of various physico-chemical factors such as, inoculum size, metal ions, carbon and nitrogen sources, pH and temperature influencing keratinase production were optimized and 3.74 folds enhancement was evidenced through response surface methodology. Silver (AgNP) and zinc oxide (ZnONP) nanoparticles with keratin hydrolysate produced from chicken feathers by the action of keratinase were synthesized and verified with UV-Visible spectroscopy that revealed biological activities like, antibacterial action against Bacillus cereus and Escherichia coli. AgNP and ZnONP also showed potential antioxidant activities through radical scavenging activities by ABTS and DPPH. AgNP and ZnONP revealed cytotoxic effect against MCF-7 breast cancer cell lines with IC50 of 5.47 µg/ml and 62.26 µg/ml respectively. Characterizations of nanoparticles were carried out by Fourier transform infrared spectroscopy, scanning electron microscopy with energy dispersive X-ray, X-ray diffraction, thermogravimetric analysis and atomic force microscopy analysis to elucidate the thermostability, structure and surface attributes. The study suggests the prospective applications of keratinase to trigger the production of bioactive value-added products and significant application in nanotechnology in biomedicine.
Collapse
Affiliation(s)
- Archana G. Revankar
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Zabin K. Bagewadi
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - Neha P. Bochageri
- Department of Biotechnology, KLE Technological University, Hubballi, Karnataka 580031, India
| | - T.M. Yunus Khan
- Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Shaik Mohamed Shamsudeen
- Department of Diagnostic dental science and Oral Biology, College of Dentistry, King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
9
|
Kikani B, Patel R, Thumar J, Bhatt H, Rathore DS, Koladiya GA, Singh SP. Solvent tolerant enzymes in extremophiles: Adaptations and applications. Int J Biol Macromol 2023; 238:124051. [PMID: 36933597 DOI: 10.1016/j.ijbiomac.2023.124051] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/05/2023] [Accepted: 03/12/2023] [Indexed: 03/18/2023]
Abstract
Non-aqueous enzymology has always drawn attention due to the wide range of unique possibilities in biocatalysis. In general, the enzymes do not or insignificantly catalyze substrate in the presence of solvents. This is due to the interfering interactions of the solvents between enzyme and water molecules at the interface. Therefore, information about solvent-stable enzymes is scarce. Yet, solvent-stable enzymes prove quite valuable in the present day biotechnology. The enzymatic hydrolysis of the substrates in solvents synthesizes commercially valuable products, such as peptides, esters, and other transesterification products. Extremophiles, the most valuable yet not extensively explored candidates, can be an excellent source to investigate this avenue. Due to inherent structural attributes, many extremozymes can catalyze and maintain stability in organic solvents. In the present review, we aim to consolidate information about the solvent-stable enzymes from various extremophilic microorganisms. Further, it would be interesting to learn about the mechanism adapted by these microorganisms to sustain solvent stress. Various approaches to protein engineering are used to enhance catalytic flexibility and stability and broaden biocatalysis's prospects under non-aqueous conditions. It also describes strategies to achieve optimal immobilization with minimum inhibition of the catalysis. The proposed review would significantly aid our understanding of non-aqueous enzymology.
Collapse
Affiliation(s)
- Bhavtosh Kikani
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Department of Biological Sciences, P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Changa 388 421, Gujarat, India
| | - Rajesh Patel
- Department of Biosciences, Veer Narmad South Gujarat University, Surat 395 007, Gujarat, India
| | - Jignasha Thumar
- Government Science College, Gandhinagar 382 016, Gujarat, India
| | - Hitarth Bhatt
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Department of Microbiology, Faculty of Science, Atmiya University, Rajkot 360005, Gujarat, India
| | - Dalip Singh Rathore
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India; Gujarat Biotechnology Research Centre, Gandhinagar 382 010, Gujarat, India
| | - Gopi A Koladiya
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India
| | - Satya P Singh
- Department of Biosciences, Saurashtra University, Rajkot 360 005, Gujarat, India.
| |
Collapse
|
10
|
Research progress on the degradation mechanism and modification of keratinase. Appl Microbiol Biotechnol 2023; 107:1003-1017. [PMID: 36633625 DOI: 10.1007/s00253-023-12360-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/13/2023]
Abstract
Keratin is regarded as the main component of feathers and is difficult to be degraded by conventional proteases, leading to substantial abandonment. Keratinase is the only enzyme with the most formidable potential for degrading feathers. Although there have been in-depth studies in recent years, the large-scale application of keratinase is still associated with many problems. It is relatively challenging to find keratinase not only with high activity but could also meet the industrial application environment, so it is urgent to exploit keratinase with high acid and temperature resistance, strong activity, and low price. Therefore, researchers have been keen to explore the degradation mechanism of keratinases and the modification of existing keratinases for decades. This review critically introduces the basic properties and mechanism of keratinase, and focuses on the current situation of keratinase modification and the direction and strategy of its future application and modification. KEY POINTS: •The research status and mechanism of keratinase were reviewed. •The new direction of keratinase application and modification is discussed. •The existing modification methods and future modification strategies of keratinases are reviewed.
Collapse
|
11
|
Timorshina S, Popova E, Kreyer V, Baranova N, Osmolovskiy A. Keratinolytic Properties of Aspergillus clavatus Promising for Biodegradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13939. [PMID: 36360819 PMCID: PMC9655890 DOI: 10.3390/ijerph192113939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
The high demand for keratinolytic enzymes and the modest presentation of fungal keratinase diversity studies in scientific sources cause a significant interest in identifying new fungal strains of keratinase producers, isolating new enzymes and studying their properties. Four out of the 32 cultures showed a promising target activity on protein-containing agar plates-Aspergillus amstelodami A6, A. clavatus VKPM F-1593, A. ochraceus 247, and Cladosporium sphaerospermum 1779. The highest values of keratinolytic activity were demonstrated by extracellular proteins synthesized by Aspergillus clavatus VKPM F-1593 cultivated under submerged conditions on a medium containing milled chicken feathers. The enzyme complex preparation was obtained by protein precipitation from the culture liquid with ammonium sulfate, subsequent dialysis, and lyophilization. The fraction of a pure enzyme with keratinolytic activity (pI 9.3) was isolated by separating the extracellular proteins of A. clavatus VKPM F-1593 via isoelectric focusing. The studied keratinase was an alkaline subtilisin-like non-glycosylated protease active over a wide pH range with optimum keratinolysis at pH 8 and 50 °C.
Collapse
|