1
|
Liu Y, Cao Y, Li H, Liu H, Chen T, Lin Q, Gong C, Yu F, Cai H, Jin L, Peng R. Mitochondrial homeostatic imbalance-mediated developmental toxicity to H 2S in embryonic zebrafish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125588. [PMID: 39725203 DOI: 10.1016/j.envpol.2024.125588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/01/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
Hydrogen sulfide (H2S) is a pervasive environmental and industrial pollutant that poses a substantial threat to human health. Even short-term exposure to H2S can result in severe respiratory and neurological damage. However, the underlying mechanisms of its biotoxicity remain unclear. Our study demonstrated that continuous exposure to 30 μM (1.02 ppm), whin environmentally H2S concentration range, results in notable developmental toxicity, including high mortality rates, morphological deformities, and behavioral abnormalities, in zebrafish larvae. Through transcriptomic analysis, examination of mitochondrial structure and function, and tissue and cellular staining, we found that H2S exposure disrupted mitochondrial dynamics, autophagy, and biogenesis, leading to an imbalance in mitochondrial homeostasis. This disruption induced oxidative stress and extensive apoptosis. Nitric oxide (NO) is a multifunctional signaling molecule known to target and regulate mitochondrial regeneration. In our study, we discovered that sodium nitroprusside (SNP), an NO donor, can activate the NO-sGC-cGMP signaling pathway. This activation improves the homeostatic regulation of mitochondrial dynamics, autophagy, and biogenesis, thereby enhancing mitochondrial function and effectively mitigating H2S-induced biotoxicity. Our research not only elucidates the biotoxicity mechanisms of H2S exposure but also provides valuable insights into potential therapeutic strategies that alleviate or eliminate its toxic effects.
Collapse
Affiliation(s)
- Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yu Cao
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huiqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanpeng Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Ting Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Qizhuan Lin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Changyong Gong
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Fan Yu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Helei Cai
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
2
|
Ricciardi M, Pironti C, Comite V, Bergomi A, Fermo P, Bontempo L, Camin F, Proto A, Motta O. A multi-analytical approach for the identification of pollutant sources on black crust samples: Stable isotope ratio of carbon, sulphur, and oxygen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175557. [PMID: 39153633 DOI: 10.1016/j.scitotenv.2024.175557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
This study is focused on the identification of pollutant sources on black crust (BC) samples from the Monumental Cemetery of Milan (Italy), through a multi-analytical approach based on the determination of stable isotope ratios of carbon, sulphur, and oxygen. Six black crust samples, mainly developed on marble sculptures over a time span of 100-150 years, were analysed. For the first time, δ13C was measured for BC samples: δ13C values of the pulverized samples (from -1.2 to +1.3 ‰) are very close to the values obtained from the carbonate matrix, whereas after the removal of the matrix through acidification, δ13C values of BC samples from Milan range from -27.2 to -22.1 ‰, with no significant variation between samples with different ratios of organic carbon to elemental carbon. In sum, the δ13C values obtained for all BC samples fall within the range of anthropogenic emissions such as vehicle traffic, coal combustion and industrial emissions. δ34S and δ18O values of sulphate from BC samples range from -6.3 to +7.0 ‰ and from +7.6 to +10.5 ‰, respectively. Coupling the analysis of the oxygen isotope ratio with that of sulphur enables a more precise identification of the origin of sulphates: the observed isotopic composition falls in the range typical for anthropogenic emission of sulphur dioxide. Overall, in this study, C, S and O isotopes were combined for the first time to assess pollutant sources on black crust samples: this multi-stable isotope approach allowed to show that the BC formation on monuments from the Monumental Cemetery of Milan mostly results from anthropogenic emissions from fossil fuels combustion by road vehicles and factories, as well as domestic heating.
Collapse
Affiliation(s)
- Maria Ricciardi
- Dipartimento di Chimica e Biologia, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy.
| | - Concetta Pironti
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy; Dipartimento di Scienze Chimiche, University of Naples Federico II, Via Cinthia, 21, Naples 80126, Italy
| | - Valeria Comite
- Dipartimento di Chimica, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Andrea Bergomi
- Dipartimento di Chimica, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Paola Fermo
- Dipartimento di Chimica, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Luana Bontempo
- Fondazione Edmund Mach, Research and Innovation Center, Food Quality and Nutrition Department, 38010 San Michele all'Adige, TN, Italy
| | - Federica Camin
- Fondazione Edmund Mach, Research and Innovation Center, Food Quality and Nutrition Department, 38010 San Michele all'Adige, TN, Italy; Centre Agriculture Food Environment C3A, University of Trento, 38010 San Michele all'Adige, TN, Italy
| | - Antonio Proto
- Dipartimento di Chimica e Biologia, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy; Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy
| | - Oriana Motta
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), 50121 Firenze, Italy; Dipartimento di Medicina, Chirurgia e Odontoiatria, University of Salerno, via S. Allende, 84081 Baronissi, SA, Italy
| |
Collapse
|
3
|
Ricciardi M, Faggiano A, Fiorentino A, Carotenuto M, Bergomi A, Comite V, Motta O, Proto A, Fermo P. Polycyclic aromatic hydrocarbons (PAHs) in black crusts on stone monuments in Milan: detection, quantification, distributions, and source assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59155-59165. [PMID: 39340603 PMCID: PMC11513708 DOI: 10.1007/s11356-024-35134-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
In the field of conservation of cultural heritage, one must always consider the environmental conditions in which the works of art are located and the level of atmospheric pollution to which they are exposed, especially in the case of monuments stored outdoors. The present study is focused on the detection and the quantification of polycyclic aromatic hydrocarbons (PAHs) in black crust samples from the Monumental Cemetery of Milan (Italy), and the assessment of their sources through the analysis of the distributions of the different compounds in the samples, together with the use of diagnostic ratios. Six black crust samples taken from funerary monuments were analyzed. Fourteen polycyclic aromatic hydrocarbons were identified (naphthalene, acenaphthylene, acenaphthene, fluorene, phenanthrene, anthracene, fluoranthene, pyrene, chrysene, benzo[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, indeno[1,2,3-cd]pyrene) by high-performance liquid chromatography with a diode-array detector (HPLC-DAD), with a total concentration from 0.72 to 3.81 μg/g (mean of 1.87 μg/g). The known carcinogenic benzo[a]pyrene accounted for 5-10% of the total polycyclic aromatic hydrocarbons in the samples analyzed, with concentrations up to 0.20 μg/g. Moreover, the study of the distribution and diagnostic ratios allowed us to confirm that anthropogenic sources such as traffic and the proximity of the train station are the major causes of the degradation of the monuments contained in this Cemetery.
Collapse
Affiliation(s)
- Maria Ricciardi
- Dipartimento di Chimica e Biologia, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy.
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), 50121, Florence, Italy.
| | - Antonio Faggiano
- Dipartimento di Chimica e Biologia, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), 50121, Florence, Italy
| | - Antonino Fiorentino
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), 50121, Florence, Italy
- Dipartimento di Chimica, University of Milan, Via Golgi 19, 20133, Milan, Italy
| | - Maurizio Carotenuto
- Dipartimento di Chimica e Biologia, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Andrea Bergomi
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), 50121, Florence, Italy
- Dipartimento di Chimica, University of Milan, Via Golgi 19, 20133, Milan, Italy
| | - Valeria Comite
- Dipartimento di Chimica, University of Milan, Via Golgi 19, 20133, Milan, Italy
| | - Oriana Motta
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), 50121, Florence, Italy
- Dipartimento di Medicina, Chirurgia e Odontoiatria, University of Salerno, Via S. Allende, 84081, Baronissi, SA, Italy
| | - Antonio Proto
- Dipartimento di Chimica e Biologia, University of Salerno, Via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e la Tecnologia dei Materiali (INSTM), 50121, Florence, Italy
| | - Paola Fermo
- Dipartimento di Chimica, University of Milan, Via Golgi 19, 20133, Milan, Italy
| |
Collapse
|
4
|
Agache I, Annesi-Maesano I, Cecchi L, Biagioni B, Chung KF, Clot B, D'Amato G, Damialis A, Del Giacco S, Dominguez-Ortega J, Galàn C, Gilles S, Holgate S, Jeebhay M, Kazadzis S, Nadeau K, Papadopoulos N, Quirce S, Sastre J, Tummon F, Traidl-Hoffmann C, Walusiak-Skorupa J, Jutel M, Akdis CA. EAACI guidelines on environmental science for allergy and asthma: The impact of short-term exposure to outdoor air pollutants on asthma-related outcomes and recommendations for mitigation measures. Allergy 2024; 79:1656-1686. [PMID: 38563695 DOI: 10.1111/all.16103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
The EAACI Guidelines on the impact of short-term exposure to outdoor pollutants on asthma-related outcomes provide recommendations for prevention, patient care and mitigation in a framework supporting rational decisions for healthcare professionals and patients to individualize and improve asthma management and for policymakers and regulators as an evidence-informed reference to help setting legally binding standards and goals for outdoor air quality at international, national and local levels. The Guideline was developed using the GRADE approach and evaluated outdoor pollutants referenced in the current Air Quality Guideline of the World Health Organization as single or mixed pollutants and outdoor pesticides. Short-term exposure to all pollutants evaluated increases the risk of asthma-related adverse outcomes, especially hospital admissions and emergency department visits (moderate certainty of evidence at specific lag days). There is limited evidence for the impact of traffic-related air pollution and outdoor pesticides exposure as well as for the interventions to reduce emissions. Due to the quality of evidence, conditional recommendations were formulated for all pollutants and for the interventions reducing outdoor air pollution. Asthma management counselled by the current EAACI guidelines can improve asthma-related outcomes but global measures for clean air are needed to achieve significant impact.
Collapse
Affiliation(s)
- Ioana Agache
- Faculty of Medicine, Transylvania University, Brasov, Romania
| | - Isabella Annesi-Maesano
- Institute Desbrest of Epidemiology and Public Health, University of Montpellier and INSERM, Montpellier, France
| | - Lorenzo Cecchi
- Centre of Bioclimatology, University of Florence, Florence, Italy
| | - Benedetta Biagioni
- Allergy and Clinical Immunology Unit San Giovanni di Dio Hospital, Florence, Italy
| | - Kian Fan Chung
- National Hearth & Lung Institute, Imperial College London, London, UK
| | - Bernard Clot
- Federal office of meteorology and climatology MeteoSwiss, Payerne, Switzerland
| | - Gennaro D'Amato
- Respiratory Disease Department, Hospital Cardarelli, Naples, Italy
- University of Naples Federico II Medical School of Respiratory Diseases, Naples, Italy
| | - Athanasios Damialis
- Department of Ecology, School of Biology, Faculty of Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefano Del Giacco
- Department of Medical Sciences and Public Health, University of Cagliari, Monserrato, Italy
| | - Javier Dominguez-Ortega
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Carmen Galàn
- Inter-University Institute for Earth System Research (IISTA), International Campus of Excellence on Agrifood (ceiA3), University of Córdoba, Córdoba, Spain
| | - Stefanie Gilles
- Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
| | - Stephen Holgate
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Mohamed Jeebhay
- Occupational Medicine Division and Centre for Environmental & Occupational Health Research, University of Cape Town, Cape Town, South Africa
| | - Stelios Kazadzis
- Physikalisch-Meteorologisches Observatorium Davos, World Radiation Center, Davos, Switzerland
| | - Kari Nadeau
- John Rock Professor of Climate and Population Studies, Department of Environmental Health, Center for Climate, Health, and the Global Environment, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Nikolaos Papadopoulos
- Allergy and Clinical Immunology Unit, Second Pediatric Clinic, National and Kapodistrian University of Athens, Athens, Greece
- Division of Evolution and Genomic Sciences, University of Manchester, Manchester, UK
| | - Santiago Quirce
- Department of Allergy, La Paz University Hospital, IdiPAZ, and CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | - Joaquin Sastre
- Allergy Service, Fundación Jiménez Díaz, Faculty of Medicine Universidad Autónoma de Madrid and CIBERES, Instituto Carlos III, Ministry of Science and Innovation, Madrid, Spain
| | - Fiona Tummon
- Respiratory Disease Department, Hospital Cardarelli, Naples, Italy
- University of Naples Federico II Medical School of Respiratory Diseases, Naples, Italy
| | - Claudia Traidl-Hoffmann
- Department of Environmental Medicine, Faculty of Medicine, University of Augsburg, Augsburg, Germany
- Institute of Environmental Medicine, Helmholtz Center Munich-German Research Center for Environmental Health, Augsburg, Germany
- Christine Kühne Center for Allergy Research and Education, Davos, Switzerland
| | - Jolanta Walusiak-Skorupa
- Department of Occupational Diseases and Environmental Health, Nofer Institute of Occupational Medicine, Lodz, Poland
| | - Marek Jutel
- Department of Clinical Immunology, Wrocław Medical University, and ALL-MED Medical Research Institute, Wroclaw, Poland
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| |
Collapse
|
5
|
Calzetta L, Di Daniele N, Chetta A, Vitale M, Gholamalishahi S, Cazzola M, Rogliani P. The Impact of Thermal Water in Asthma and COPD: A Systematic Review According to the PRISMA Statement. J Clin Med 2024; 13:1071. [PMID: 38398384 PMCID: PMC10889407 DOI: 10.3390/jcm13041071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Asthma and chronic obstructive pulmonary disease (COPD) are global health challenges leading to substantial morbidity and mortality. While existing guidelines emphasize evidence-based treatments, the potential therapeutic role of thermal water (TW) inhalation remains under-investigated. METHODS This systematic review followed PRISMA-P guidelines and sought to evaluate the impact of TW in asthma and COPD. A thorough literature search, performed up to May 2023, encompassed in vitro, in vivo, randomized controlled trial (RCT), non-RCT, and observational studies. RESULTS The review included 12 studies reporting different findings. In vitro studies suggested TW could enhance antioxidant capacity and cell proliferation. In a murine model of non-atopic asthma, TW inhalation reduced airway hyperresponsiveness and inflammation. RCTs in COPD patients indicated mixed effects, including improved quality of life, reduced airway oxidant stress, and enhanced exercise tolerance. Asthma patients exposed to water aerosols exhibited improved lung function and reduced airway inflammation. Non-RCTs showed improved lung function and antioxidant activity after TW therapy. Additionally, observational studies reported enhanced lung function and reduced airway inflammation. CONCLUSION The current evidence suggests potential benefits of TW therapy in asthma and COPD. However, limited high-quality RCTs and concerns regarding occupational TW exposure necessitate further investigation. While TW therapy offers a non-invasive treatment, its therapeutic potential still needs definitive demonstration. Future research should therefore prioritize well-designed RCTs to thoroughly establish the efficacy and safety of TW as a potential therapeutic intervention for asthma and COPD.
Collapse
Affiliation(s)
- Luigino Calzetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
| | - Nicola Di Daniele
- Department of Systems Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
- Fondazione Leonardo per le Scienze Mediche Onlus, Policlinico Abano, 35031 Abano Terme, Italy
| | - Alfredo Chetta
- Respiratory Disease and Lung Function Unit, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy;
- Cardio-Thoracic and Vascular Department, University Hospital of Parma, 43126 Parma, Italy
| | - Marco Vitale
- Faculty of Medicine, Vita-Salute University-San Raffaele, 20132 Milan, Italy;
- Italian Foundation for Research in Balneology (FoRST), 00198 Rome, Italy
| | - Shima Gholamalishahi
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (S.G.); (M.C.); (P.R.)
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (S.G.); (M.C.); (P.R.)
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy; (S.G.); (M.C.); (P.R.)
| |
Collapse
|
6
|
Faggiano A, Pironti C, Motta O, Miele Y, Fiorentino A, Marchettini N, Ricciardi M, Proto A. Insight on the deterioration of cultural objects: a multi-analytical approach to characterize degradation products of lead weights from a Steinway & sons piano. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:104633-104639. [PMID: 37707725 PMCID: PMC10567956 DOI: 10.1007/s11356-023-29790-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
The identification of the degradation products in objects of cultural significance, including musical instruments (e.g., a piano), is a key issue for the preservation and valorisation processes of cultural heritage. The aim of this study is to characterize the degradation products of lead weights from an important Steinway & sons piano using a multi-analytical approach that includes ionic chromatography (IC), X-ray diffraction (XRD) and Fourier transform-infrared (FTIR) spectroscopy analyses. These techniques allowed us to identify hydrocerussite as the main degradation product on the superficial layer of lead weights, followed by lead acetate and formate. Moreover, accelerated corrosion experiments in closed environments were performed under acetic and formic acid atmospheres to evaluate the development of lead acetate and formate over time. Exposure of lead weights to formic and acetic acid vapours leads to the prevalent formation of basic lead formate, which promotes the formation of hydrocerussite. These results can help to limit the degradation of these piano components and consequently preserve the sound of the piano itself.
Collapse
Affiliation(s)
- Antonio Faggiano
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, (SA), Salerno, Italy
- Consorzio Interuniversitario per la Scienza e la Tecnologia dei Materiali (INSTM), 50121, Firenze, Italy
| | - Concetta Pironti
- Consorzio Interuniversitario per la Scienza e la Tecnologia dei Materiali (INSTM), 50121, Firenze, Italy
- Department of Medicine Surgery and Dentistry, University of Salerno, via S. Allende, 84081, Baronissi, (SA), Salerno, Italy
| | - Oriana Motta
- Consorzio Interuniversitario per la Scienza e la Tecnologia dei Materiali (INSTM), 50121, Firenze, Italy
- Department of Medicine Surgery and Dentistry, University of Salerno, via S. Allende, 84081, Baronissi, (SA), Salerno, Italy
| | - Ylenia Miele
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, (SA), Salerno, Italy
| | - Antonino Fiorentino
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, (SA), Salerno, Italy
- Consorzio Interuniversitario per la Scienza e la Tecnologia dei Materiali (INSTM), 50121, Firenze, Italy
| | - Nadia Marchettini
- Department of Earth, Environmental and Physical Sciences, University of Siena, Pian dei Mantellini 44, 53100, Siena, Italy
| | - Maria Ricciardi
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, (SA), Salerno, Italy.
- Consorzio Interuniversitario per la Scienza e la Tecnologia dei Materiali (INSTM), 50121, Firenze, Italy.
| | - Antonio Proto
- Department of Chemistry and Biology, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, (SA), Salerno, Italy
- Consorzio Interuniversitario per la Scienza e la Tecnologia dei Materiali (INSTM), 50121, Firenze, Italy
| |
Collapse
|