1
|
Sayed MA, El-Gamal SMA, Ramadan M, Helmy FM, Mohsen A. Hydrothermal synthesis and structural optimization of Bi 2O 3/Bi 2WO 6 nanocomposites for synergistic photodegradation of Indigo Carmine dye. Sci Rep 2025; 15:17260. [PMID: 40383748 PMCID: PMC12086239 DOI: 10.1038/s41598-025-01925-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025] Open
Abstract
Future research directions aim to optimize the efficiency and sustainability of bismuth-based semiconductors for environmental remediation. In this study, potent Bi2O3/Bi2WO6 composites were synthesized via a facile in situ hydrothermal-assisted impregnation of Bi3+ onto WO3 nano-substrate. Comprehensive characterization using HR-TEM, SEM-EDX, PXRD, XPS, FTIR, PL, and DRS confirmed the structural, morphological, and optical properties of the synthesized materials. The optimized Bi2O3/Bi2WO6 heterojunction exhibited significantly enhanced photocatalytic activity under visible-light (λ > 350 nm) compared to pristine Bi2O3 and WO3, effectively degrading Indigo Carmine (IC) dye. The UV-Vis spectroscopy and chemical oxygen demand (COD) analyses validated the degradation efficiency. A detailed photocatalytic mechanism was proposed based on trapping experiments, band position calculations, and photoluminescence measurements. Furthermore, the fabricated nanocomposites demonstrated excellent stability and recyclability, highlighting their potential for environmental remediation. This study provides a promising strategy for designing efficient visible-light-driven photocatalysts for wastewater treatment.
Collapse
Affiliation(s)
- Mostafa A Sayed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - S M A El-Gamal
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - M Ramadan
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Fatma M Helmy
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Alaa Mohsen
- Faculty of Engineering, Ain Shams University, Cairo, Egypt
| |
Collapse
|
2
|
Ahmed MA, Mahmoud SA, Mohamed AA. Interfacially engineered metal oxide nanocomposites for enhanced photocatalytic degradation of pollutants and energy applications. RSC Adv 2025; 15:15561-15603. [PMID: 40365192 PMCID: PMC12068376 DOI: 10.1039/d4ra08780a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025] Open
Abstract
Escalating global energy demands and environmental pollution necessitate innovative solutions for sustainable development. Conventional methods often prove inadequate, driving research towards advanced materials and technologies. This review critically analyzes existing industrial wastewater treatment approaches, highlighting their merits and limitations, before focusing on the recent advancements in metal oxide-based nanocomposite photocatalysis for both pollutant degradation and energy generation. Moreover, the structural, electronic, and optical properties of metal oxides (MOx) are elucidated. The review discusses various MOx synthesis routes and their nanocomposites and elucidates the underlying photocatalytic mechanisms, emphasizing the influence of operational parameters on photocatalytic efficiency. Moreover, it explores how MOx can be utilized for photocatalytic energy generation, in addition to their role in pollutant degradation. Furthermore, it delves into the synergistic effects achieved by combining MOx with complementary nanomaterials (carbon-based structures, polymers, non-metals, semiconductors, and metal sulfides) to create hybrid nanocomposites with enhanced photocatalytic activity for both applications. A cost analysis and SWOT analysis are presented to assess the economic and technological feasibility of this trend. This comprehensive overview provides valuable insights for developing efficient, sustainable, and scalable wastewater treatment solutions using MOx-based nanocomposites, ultimately contributing to improved environmental remediation and water resource management while simultaneously exploring opportunities for energy production.
Collapse
Affiliation(s)
- Mahmoud A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| | - Safwat A Mahmoud
- Center for Scientific Research and Entrepreneurship, Northern Border University Arar 73213 Saudi Arabia
| | - Ashraf A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| |
Collapse
|
3
|
Yarangsee C, Narakaew S, Utara S, Thungprasert S, Promanan T, Chaisena A. Ag/AgCl-NW/rGO composite for high-efficiency visible-light-driven photocatalytic activity of rhodamine B. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6658-6677. [PMID: 40009325 DOI: 10.1007/s11356-025-36162-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
One of the biggest environmental challenges still facing wastewater treatment is the efficient breakdown of dye pollutants such as rhodamine B (RhB). The development of effective photocatalysts that function in sunlight and visible light can greatly improve wastewater treatment systems. Combining reduced graphene oxide (rGO) with silver/silver chloride core-shell nanowires (Ag/AgCl-NW) might offer special optical and structural properties that enhance its photocatalytic activity for RhB degradation. Ag/AgCl-NW/rGO composite was produced by electroplating rGO onto stainless steel and then covering it with evenly dispersed Ag/AgCl-NW. In 120 min, the Ag/AgCl-NW/rGO composite degraded 99.78% of RhB (dye concentration of 10 ppm at pH 8) under visible light, following pseudo-first-order kinetics (rate constant: 0.0498 min⁻1) and maintaining its effectiveness for four reuse cycles. The photodegradation pathway is primarily dominated by direct chromophore degradation rather than the more typical de-ethylated rhodamine (Rh-110) pathway. Unlike RhB, Rh-110 is only produced when exposed to visible light, and it is completely oxidized in the presence of sunlight. These findings show the Ag/AgCl-NW/rGO composite to be a promising photocatalyst for effective RhB degradation in visible light and enhanced efficiency in sunlight, highlighting its potential for sustainable wastewater treatment applications.
Collapse
Affiliation(s)
- Chollada Yarangsee
- Department of Applied Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Lampang Rajabhat University, Lampang, 52100, Thailand
| | - Samroeng Narakaew
- Department of Applied Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Lampang Rajabhat University, Lampang, 52100, Thailand
| | - Songkot Utara
- Department of Chemistry, Faculty of Science, Udon Thani Rajabhat University, 64 Taharn Road, Muang, Udon Thani, 41000, Thailand
| | - Siwat Thungprasert
- Department of Applied Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Lampang Rajabhat University, Lampang, 52100, Thailand
| | - Theeraporn Promanan
- Department of Applied Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Lampang Rajabhat University, Lampang, 52100, Thailand
| | - Aphiruk Chaisena
- Department of Applied Chemistry and Centre of Excellence for Innovation in Chemistry, Faculty of Science, Lampang Rajabhat University, Lampang, 52100, Thailand.
| |
Collapse
|
4
|
Naqvi SMA, Islam SN, Kumar A, Patil CR, Kumar A, Ahmad A. Enhanced anti-cancer potency of sustainably synthesized anisotropic silver nanoparticles as compared with L-asparaginase. Int J Biol Macromol 2024; 263:130238. [PMID: 38367787 DOI: 10.1016/j.ijbiomac.2024.130238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/01/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Acute lymphoblastic leukemia (ALL), a hematologic cancer that involves the production of abnormal lymphoid precursor cells, primarily affects children aged 2 to 10 years. The bacterial enzyme L-asparaginase produced from Escherichia coli is utilised as first-line therapy, despite the fact that 30 % of patients have a treatment-limiting hypersensitivity reaction. The current study elucidates the biosynthesis of extremely stable, water-dispersible, anisotropic silver nanoparticles (ANI Ag NPs) at room temperature and investigation of its anti-tumor potency in comparison to L-asparaginase. The optical, morphological, compositional, and structural properties of synthesized nanoparticles were evaluated using UV-Vis-NIR spectroscopy, Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy, and X-ray Diffractometer. The UV-Vis-NIR spectra revealed the typical Surface Plasmon Resonance (SPR) at 423 nm along with additional NIR absorption at 962 nm and 1153 nm, while TEM images show different shapes and sizes of Ag nanoparticles ranging from 6.81 nm to 46 nm, together confirming their anisotropic nature. Further, the MTT assay demonstrated promising anticancer effects of ANI Ag NPs with an IC50 value of ∼7 μg/mL against HuT-78 cells. These sustainable anisotropic silver nanoparticles exhibited approximately four times better cytotoxic ability (at and above 10 μg/mL concentrations) than L-asparaginase against HuT-78 cells (a human T lymphoma cell line). Apoptosis analysis by Wright-Geimsa, Annexin-V, and DAPI staining indicated the role of apoptosis in ANI Ag NPs-mediated cell death. The measurement of NO, and Bcl2 and cleaved caspase-3 levels by colorimetric method and immunoblotting, respectively suggested their involvement in ANI Ag NPs-elicited apoptosis. The findings indicate that the biogenic approach proposed herein holds tremendous promise for the rapid and straightforward design of novel multifunctional nanoparticles for the treatment of T cell malignancies.
Collapse
Affiliation(s)
- Syed Mohd Adnan Naqvi
- Interdisciplinary Nanotechnology Centre (INC), Z. H. College of Engineering and Technology, Aligarh Muslim University, AMU, Aligarh UP-202002, India
| | - Sk Najrul Islam
- Interdisciplinary Nanotechnology Centre (INC), Z. H. College of Engineering and Technology, Aligarh Muslim University, AMU, Aligarh UP-202002, India
| | - Abhishek Kumar
- Tumor Biomarkers and Therapeutic Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi UP-221005, India
| | | | - Ajay Kumar
- Tumor Biomarkers and Therapeutic Lab, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi UP-221005, India.
| | - Absar Ahmad
- Interdisciplinary Nanotechnology Centre (INC), Z. H. College of Engineering and Technology, Aligarh Muslim University, AMU, Aligarh UP-202002, India.
| |
Collapse
|
5
|
Elshahawy MF, Ahmed NA, Gad YH, Ali AEH. Efficient photocatalytic remediation of lerui acid brilliant blue dye using radiation- prepared carboxymethyl cellulose/acrylic acid hydrogel supported by ZnO@Ag. Int J Biol Macromol 2024; 262:129946. [PMID: 38340936 DOI: 10.1016/j.ijbiomac.2024.129946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Organic dye pollution from textiles and other industries presents a substantial risk to people and aquatic life. The use of photocatalysis to decolorize water using the strength of UV light is one of the most important remediation techniques. In the present study, a novel nanocomposites hydrogel including carboxymethyl cellulose (CMC), acrylic acid (AAc), Zinc oxide (ZnO), and silver (Ag) nanoparticles was produced using an eco-friendly γ-irradiation technique for photocatalytic decolorization applications. ZnO and Ag nanoparticles were distributed in the CMC/AAc hydrogel matrix without significant aggregation. SEM, XRD, EDX, TEM, and FTIR analyses were used to assess the physicochemical characteristics of the nanocomposite samples. Carboxymethyl cellulose/acrylic acid/Zinc oxide doped silver (CMC/PAAc/ZnO@Ag) nanocomposite hydrogels were developed and utilized in the photocatalytic decolorization of the lerui acid brilliant blue dye (LABB) when exposed to ultraviolet (UV) radiation. UV- Vis spectrophotometry was utilized to analyze the optical properties of the produced nanostructure. Regarding the decolorization of the LABB, the impacts of operational variables were investigated. The optimum conditions for decolorization (93 %) were an initial concentration of 50 mg/L, pH = 4, catalyst dosage of 50 g/L, and exposure time of 90 min. The results illustrated that the LABB acidic dye from wastewater was remarkably decolored.
Collapse
Affiliation(s)
- Mai F Elshahawy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nehad A Ahmed
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Yasser H Gad
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
| | - Amr El-Hag Ali
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
6
|
Rocha V, Ferreira-Santos P, Aguiar C, Neves IC, Tavares T. Valorization of plant by-products in the biosynthesis of silver nanoparticles with antimicrobial and catalytic properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14191-14207. [PMID: 38278998 PMCID: PMC10881659 DOI: 10.1007/s11356-024-32180-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
Biosynthesis based on natural compounds has emerged as a sustainable approach for the production of metallic nanoparticles (MNP). The main objective of this study was to biosynthesize stable and multifunctional silver nanoparticles (AgNP) using different plant by-products as reducers and capping agents. Extracts obtained from Eucalyptus globulus, Pinus pinaster, Citrus sinensis, Cedrus atlantica and Camellia sinensis by-products, were evaluated. From all plant by-products tested, aqueous extract of eucalyptus leaves (EL), green tea (GT) and black tea (BT) were selected due to their higher antioxidant phenolic content and were individually employed as reducers and capping agents to biosynthesize AgNP. The green AgNP showed zeta potential values of -31.8 to -36.3 mV, with a wide range of particle sizes (40.6 to 86.4 nm), depending on the plant extract used. Green AgNP exhibited an inhibitory effect against various pathogenic bacteria, including Gram-negative (P. putida, E. coli, Vibrio spp.) and Gram-positive (B. megaterium, S. aureus, S. equisimilis) bacteria with EL-AgNP being the nanostructure with the greatest antimicrobial action. EL-AgNP showed an excellent photodegradation of indigo carmine (IC) dye under direct sunlight, with a removal percentage of up to 100% after 75 min. A complete cost analysis revealed a competitive total cost range of 8.0-9.0 €/g for the biosynthesis of AgNP.
Collapse
Affiliation(s)
- Verónica Rocha
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| | - Pedro Ferreira-Santos
- Department of Chemical Engineering, Faculty of Science, University of Vigo, As Lagoas, 32004, Ourense, Spain
| | - Cristina Aguiar
- CBMA-Centre of Molecular and Environmental Biology, University of Minho, 4710-057, Braga, Portugal
| | - Isabel C Neves
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- CQ-UM - Centre of Chemistry, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Teresa Tavares
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
- LABBELS -Associate Laboratory, 4710-057, Braga/Guimarães, Portugal
| |
Collapse
|
7
|
Sukhadeve GK, Gedam RS. Visible light assisted photocatalytic degradation of mixture of reactive ternary dye solution by Zn-Fe co-doped TiO 2 nanoparticles. CHEMOSPHERE 2023; 341:139990. [PMID: 37648162 DOI: 10.1016/j.chemosphere.2023.139990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/16/2023] [Accepted: 08/25/2023] [Indexed: 09/01/2023]
Abstract
The current study deals with the synthesis of novel Zn, and Fe co-doped TiO2 photocatalyst by the sol-gel method at room temperature. The prepared photocatalysts are characterized by several standard analytical tools. X-ray diffraction (XRD) and Raman analysis verifies the tetragonal anatase phase of TiO2 in all synthesized nanoparticles. The morphology and chemical composition of ZFT_2.5 were confirmed using the Field-Emission Scanning Electron Microscope (FE-SEM) and energy dispersive X-ray (EDAX) analysis respectively. X-ray photoelectron spectroscopy (XPS) measurements verify the binding energies of a host and dopant material. The High resolution transmission electron microscopy (HR-TEM) reveals the presence of spherical nanoparticles in ZFT_2.5 photocatalyst with a diameter ranging from 8 to 20 nm. The absorption spectra of the prepared nanoparticles exhibit strong absorption in visible light. The synergistic effect created by Zn and Fe blocked the light induced charge carriers and delayed the recombination probability. The photocatalyst ZFT_2.5 was tested for photocatalytic degradation against the mixture of the three cationic dyes [rhodamine B (RhB), malachite green (MG), and methylene blue (MB)] under exposure of visible light. Total organic carbon (TOC) study was performed to evaluate the organic character of the photodegradate dye solution.
Collapse
Affiliation(s)
- G K Sukhadeve
- Department of Physics, Visvesvaraya National Institute of Technology, Nagpur, 440010, India
| | - R S Gedam
- Department of Physics, Visvesvaraya National Institute of Technology, Nagpur, 440010, India.
| |
Collapse
|
8
|
Bhapkar AR, Geetha M, Jaspal D, Gheisari K, Laad M, Cabibihan JJ, Sadasivuni KK, Bhame S. Aluminium doped ZnO nanostructures for efficient photodegradation of indigo carmine and azo carmine G in solar irradiation. APPLIED NANOSCIENCE 2023. [DOI: 10.1007/s13204-023-02824-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
AbstractAluminium doped zinc oxide (AZO) nanomaterials (AlxZn1-xO) with x fraction varying as 0.02 and 0.04 were synthesized using the auto-combustion method using glycine as a fuel. The synthesized catalysts were characterized with X-ray diffraction (XRD), UV–Visible Spectroscopy (UV–Vis), Raman spectroscopy, Photoluminescence (PL) spectroscopy, and High Resolution Transmission Electron Microscopy (HR-TEM). XRD results showed that synthesized materials possessed good crystallinity, while UV–VIS was employed to find the band gaps of synthesized materials. Raman was used to determine the vibrational modes in the synthesized nanoparticles, while TEM analysis was performed to study the morphology of the samples. Industrial effluents such as indigo carmine and azo carmine G were used to test the photodegradation ability of synthesised catalysts. Parameters such as the effect of catalyst loading, dye concentration and pH were studied. The reduction in crystallite size, band gap and increased lattice strain for the 4% AZO was the primary reason for the degradation in visible irradiation, degrading 97 and 99% equimolar concentrations of indigo carmine and azo carmine G in 140 min. The Al doped ZnO was found to be effective in faster degradation of dyes as compared to pure ZnO in presence of natural sunlight.
Collapse
|
9
|
Janbandhu S, Patra U, Sukhadeve G, Kumar R, Gedam R. Photocatalytic performance of glasses embedded with Ag-TiO2 quantum dots on photodegradation of indigo carmine and eosin Y dyes in sunlight. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2022.110317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|