1
|
Wang Y, Xiao R, Hu Y, Li J, Guo C, Zhang L, Zhang K, Jorquera MA, Pan W. Accumulation and ecological risk assessment of diazinon in surface sediments of Baiyangdian lake and its potential impact on probiotics and pathogens. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124408. [PMID: 38906403 DOI: 10.1016/j.envpol.2024.124408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Diazinon is an organophosphorus pesticide widely used in agriculture and household pest control, and its use also poses several environmental and health hazards. In this study, we investigated the spatial and temporal distribution of diazinon in Baiyangdian, evaluated its potential ecological risk and toxicity to aquatic organisms based on RQ (Risk quotient) and TU (Toxic unit) analysis, and assessed the potential effects of diazinon accumulation on probiotics and pathogens based on statistical analysis of high-throughput sequencing data. The results showed that diazinon in Baiyangdian posed a low to moderate chronic risk to sediment-dwelling organisms and a low toxicity effect on aquatic invertebrates, which was mainly concentrated in October and human-intensive areas. Meanwhile, increases in sediment electrical conductivity (EC), amorphous iron oxides content and phenol oxidase activity favored diazinon accumulation in sediments, whereas the opposite was the case for sediment organic carbon, β-1,4-glucosidase, phosphatase, catalase and pH, suggesting that environmental indicators play a key role in the behavior and distribution of diazinon. In addition, diazinon in heavily contaminated areas seem to inhibit the rare probiotics (Bifidobacterium adolescentis and Serratia sp.), while promoted dominant pathogens (e.g., Burkholderia cenocepacia), which can lead to increased disease risk to humans and ecosystems, disruption of ecological balance and potential health problems. However, probiotic Streptomyces xiamenensis resist to diazinon would be a potential degrader for diazinon remove. In conclusion, this study unveiled the effects of diazinon pollution on wetland ecosystems, emphasizing ecological impacts and potential health concerns. In addition, the discovery of diazinon resistant probiotics provided new insights into wetland ecological restoration.
Collapse
Affiliation(s)
- Yaping Wang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Rong Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China.
| | - Yanping Hu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Junming Li
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Congling Guo
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071003, China
| | - Milko A Jorquera
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco, 01145, Chile
| | - Wenbin Pan
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
2
|
Yang J, Fan Y, Lu Z, Guo Y, Huang J, Cai K, Sun Q, Wang F. Positive profile of natural small molecule organic matters on emerging antivirus pharmaceutical elimination in advance reduction process: A deep dive into the photosensitive mechanism of triplet excited state compounds. WATER RESEARCH 2024; 256:121611. [PMID: 38640567 DOI: 10.1016/j.watres.2024.121611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/05/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Natural small molecular organic matter (NSOM), ubiquitous in natural waters and distinct from humic acid or fulvic acid, is a special type of dissolved organic matter (DOM) which is characterized as strong photosensitivity and simple molecular structure. However, little study had been directed on the role of NSOM in eliminating emerging contaminants in advanced reduction process (ARP). This study took three small molecular isomeric organic acids (p-hydroxybenzoic acid, pHBA; salicylic acid, SA; m-hydroxybenzoic acid, mHBA) as the representative substances of NSOM to explore these mechanisms on promoting Ribavirin (RBV, an anti COVID-19 medicine) degradation in ultraviolet activated sulfite (UV/Sulfite) process. The results demonstrated that the observed degradation rate constant of RBV (kobs-RBV) was 7.56 × 10-6 s-1 in UV/Sulfite process, indicating that hydrated electron (eaq-) from UV/Sulfite process could not effectively degrade RBV, while it increased by 178 and 38 times when pHBA and SA were introduced into UV/Sulfite process respectively, suggesting that pHBA and SA strongly promoted RBV degradation while mHBA had no promotion on RBV abatement in UV/Sulfite process. Transient absorption spectra and reactive intermediates scavenging experiment indicated that the triplet excited state pHBA and SA (3pHBA* and 3SA*) contributed to the degradation of RBV through non-radical process. Notably, eaq- played the role of key initiator in transforming pHBA and SA into their triplet states. The difference of kobs-RBV in UV/Sulfite/pHBA and UV/Sulfite/SA process was attributed to different generation pathways of 3pHBA* and 3SA* (high molar absorptivity at the wavelength of 254 nm and photosensitive cycle, respectively) and their second order rate constants towards RBV (kRBV-3pHBA* = 8.60 × 108 M-1 s-1 and kRBV-3SA* = 6.81 × 107 M-1 s-1). mHBA could not degrade RBV for its lack of intramolecular hydrogen bond and low molar absorptivity at 254 nm to abundantly transform into its triplet state. kobs-RBV increased as pH increased from 5.0 to 11.0 in UV/Sulfite/SA process, due to the high yield of eaq- in alkaline condition which promoted the generation of 3SA* and the stable of the absorbance of SA at 254 nm. By contrast, kobs-RBV underwent a process of first increasing and then decreasing in UV/Sulfite/pHBA process as the increase of pH, and its highest value achieved in a neutral condition. This lied in the exposure of eaq- increased as the increase of pH which promoted the generation of 3pHBA*, while the molar absorptivity of pHBA at 254 nm decreased as the increase of pH in an alkaline condition which inhibited the yield of 3pHBA*. The RBV degradation pathways and products toxicity assessment indicated that UV/Sulfite/pHBA had better detoxification performance on RBV than UV/Sulfite/SA process. This study disclosed a novel mechanism of emerging contaminants abatement through non-radical process in NSOM mediated ARP, and provide a wide insight into positive profile of DOM in water treatment process, instead of only taking DOM as a quencher of reactive intermediates.
Collapse
Affiliation(s)
- Jing Yang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Yongjie Fan
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China; College of the Environment & Ecology, Xiamen University, Xiamen 361102, Fujian, China
| | - Zhilei Lu
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Yuxin Guo
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Jintao Huang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350117, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, China
| | - Qiyuan Sun
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China.
| | - Feifeng Wang
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Key Laboratory of Pollution Control & Resource Reuse, Fujian Normal University, Fuzhou 350117, Fujian, China.
| |
Collapse
|
3
|
Mirshafiee A, Nourollahi M, Shahriary A. Application of electro oxidation process for treating wastewater from petrochemical with mixed metal oxide electrode. Sci Rep 2024; 14:1760. [PMID: 38243014 PMCID: PMC10799041 DOI: 10.1038/s41598-024-52201-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024] Open
Abstract
Petrochemicals require a large volume of water for their operation, which results in the production of a large volume of wastewater. Treatment of petrochemical wastewater is an important process before discharging it into the environment. This research examines the treatment of real petrochemical wastewater using the electrochemical oxidation process. Direct anodic oxidation is an effective advanced electrochemical oxidation process (AEOP), with different electrodes using a parallel plate electrochemical reactor. Four types of real wastewater were received from different petrochemical units were treated by AEOP. Real wastewater samples with chemical oxygen demand (COD) concentrations ranging from 20,450 to 52,300 mg/l. The main goal of this research is to make electrodes of Mixed Metal Oxide (MMO), which can reduce the treatment time and electricity consumption for oxidation, greater stability of the surface of the electrodes. Investigation of the rate constant kinetics shows that high COD removal efficiency can be achieved following the pseudo-second order reaction rate (R2 > 98%). When the wastewater pH is less than 5, COD removal efficiency is higher and the treatment process will be successful, which succeeded in removing 79% COD, but in alkaline wastewater, COD reduction efficiency was not satisfactory. The electricity consumption for 79% removal during 6 min was 117 kWh/m3. As a result, due to the very short time of the process (6 min), it can be used as one of the pre-treatment steps of petrochemical wastewater with acidic pH.
Collapse
Affiliation(s)
- Amir Mirshafiee
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, Faculty of Health, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Nourollahi
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Azarpira H, Rasolevandi T, Mahvi AH. Diazinon and MCPA photo-reduction with sulfite excitation under UV irradiation and reducing agents' generation. Heliyon 2023; 9:e20880. [PMID: 37876429 PMCID: PMC10590789 DOI: 10.1016/j.heliyon.2023.e20880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/01/2023] [Accepted: 10/09/2023] [Indexed: 10/26/2023] Open
Abstract
Diazinon (DIZ) and 4-Chloro-2-methylphenoxyacetic acid (MCPA) herbicide and widely used in agricultural lands. Present study investigates diazinon and 4-chloro-2-methylphenoxyacetic acid photo-reduction via UV/Sulfite (US) in as Advanced Reduction Processes (ARP). The ideal pH was Molar ratio of sulfite: DIZ or MCPA 1:1 and, 20 min reaction time, and pH 9, in which about 100 % reduction of DIZ and MCPA with a concentration of 10 mg L-1 was achieved and the optimal conditions were considered. Kinetic investigation increasing DIZ and MCPA concentration from 5 to 20 mgL-1, kobs increase about from 0.151 to 0.234 for DIZ and from 0.231 to 0.589 min-1. Also, reaction rate (robs) increases about from 0.755 to 4.68 for DIZ and from 1.155 to 11.78 mg L-1.min. The amount of energy consumption in DIZ solution increased from 5 to 20, respectively, from 0.73 to 2.37, and in the reduction of MCPA from 0.47 to 1.49 kWh per cubic meter. According to experiments performed in 30 min with the US process, COD levels were reduced by about 46 % of both pollutants. It is important to note that the BOD/COD ratio rose from about 0.20 to 0.48 after 30 min. Since the index of biodegradability has grown high, it can be concluded that non-biodegradable COD (NBDCOD) convert to biodegradable COD (BDCOD) and toxicity is lower than of before of treatment. This study has been very suggesting that the UV/sulfite method produces effluent with a non-toxic and ecologically beneficial manner by biological treatment or discharge directly in environment.
Collapse
Affiliation(s)
- Hossein Azarpira
- Department of Environmental Health Engineering, Social Determinants of Health Research Center, Saveh University of Medical Sciences, Saveh, Iran
| | - Tayebeh Rasolevandi
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Solid Waste Research (CSWR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|