1
|
Nguyen DTC, Nguyen NTT, Nguyen TTT, Tran TV. Recent advances in the biosynthesis of ZnO nanoparticles using floral waste extract for water treatment, agriculture and biomedical engineering. NANOSCALE ADVANCES 2024; 6:4047-4061. [PMID: 39114141 PMCID: PMC11302053 DOI: 10.1039/d4na00133h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024]
Abstract
Flowers are often discarded after cultural and religious events, making it worthwhile to explore the utilization of this floral waste for material production. Floral extracts contain a diverse array of phytochemicals such as polyphenols, flavonoids, and reducing sugars, which play a significant role in the formation and influencing the properties of zinc oxide (ZnO) nanoparticles. In this review, we delve into the importance of floral extract, methodology, mechanism, and influencing factors in the production of ZnO nanoparticles. Additionally, the role of green ZnO nanoparticles as an adsorbent and photocatalyst for water treatment is discussed. These floral extract-mediated ZnO nanoparticles exhibit advantages in agricultural and biomedical applications, including promoting seed germination and demonstrating antibacterial, anticancer, and antifungal properties. Cost analysis reveals that while various expenses are associated with ZnO production, scaling up processes can help reduce these costs. This review underscores the potential of floral waste extract for the synthesis of green ZnO nanoparticles, thereby contributing to waste-to-wealth strategies and adhering to green chemistry principles.
Collapse
Affiliation(s)
- Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
| | - Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
- Nong Lam University - Ho Chi Minh City Ho Chi Minh City 700000 Vietnam
| | | | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University 298-300A Nguyen Tat Thanh, District 4 Ho Chi Minh City 755414 Vietnam
| |
Collapse
|
2
|
Nguyen NTT, Nguyen LM, Nguyen TTT, Nguyen DTC, Tran TV. Synthesis strategies, regeneration, cost analysis, challenges and future prospects of bacterial cellulose-based aerogels for water treatment: A review. CHEMOSPHERE 2024; 362:142654. [PMID: 38901705 DOI: 10.1016/j.chemosphere.2024.142654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/12/2023] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Clean water is an integral part of industries, agricultural activities and human life, but water contamination by toxic dyes, heavy metals, and oil spills is increasingly serious in the world. Aerogels with unique properties such as highly porous and extremely low density, tunable surface modification, excellent reusability, and thermal stability can contribute to addressing these issues. Thanks to high purity, biocompatibility and biodegradability, bacterial cellulose can be an ideal precursor source to produce aerogels. Here, we review the modification, regeneration, and applications of bacterial cellulose-based aerogels for water treatment. The modification of bacterial cellulose-based aerogels undergoes coating of hydrophobic agents, carbonization, and incorporation with other materials, e.g., ZIF-67, graphene oxide, nanoparticles, polyaniline. We emphasized features of modified aerogels on porosity, hydrophobicity, density, surface chemistry, and regeneration. Although major limits are relevant to the use of toxic coating agents, difficulty in bacterial culture, and production cost, the bacterial cellulose aerogels can obtain high performance for water treatment, particularly, catastrophic oil spills.
Collapse
Affiliation(s)
- Ngoan Thi Thao Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam
| | - Luan Minh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City, 700000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi, 100000, Viet Nam
| | | | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Viet Nam.
| |
Collapse
|
3
|
Ye M, Fang S, Yu Q, Chen J, Li P, Zhang C, Ge Y. Copper and zinc interact significantly in their joint toxicity to Chlamydomonas reinhardtii: Insights from physiological and transcriptomic investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167122. [PMID: 37717753 DOI: 10.1016/j.scitotenv.2023.167122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Copper (Cu) and zinc (Zn) often discharge simultaneously from industrial and agricultural sectors and cause stress to aquatic biota. Although microalgae have been extensively investigated for their responses to Cu or Zn exposure, how they cope with the mixtures of two metals, especially at transcriptomic level, remains largely unknown. In this study, Chlamydomonas reinhardtii was exposed to environmentally relevant concentrations of two metals. It was found that Zn promoted the entry of Cu into the algal cells. With the increase of combined toxicity, extracellular polymeric substances (EPS) and cell wall functional groups immobilized significant amounts of Cu and Zn. Furthermore, C. reinhardtii adjusted resistance strategies internally, including starch consumption and synthesis of chlorophyll and lipids. Upon high level of Cu and Zn coexistence, synergistic effects were observed in lipid peroxidation and catalase (CAT) activity. Under 1.05 mg/L Cu + 0.87 mg/L Zn, 256 differentially expressed genes (DEGs) were mainly involved in oxidative phosphorylation, ribosome, nitrogen metabolism; while 4294 DEGs induced by 4.21 mg/L Cu + 3.48 mg/L Zn were mainly related to photosynthesis, citric acid cycle, etc. Together, this study revealed a more comprehensive understanding of mechanisms of Cu/Zn detoxification in C. reinhardtii, emphasizing critical roles of photosynthetic carbon sequestration and energy metabolism in the metal resistance.
Collapse
Affiliation(s)
- Menglei Ye
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Fang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingnan Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiale Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Peihuan Li
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunhua Zhang
- Laboratory Centre of Life Science, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Ge
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Tahir Z, Hayyat MU, Khan QF, Sharif F, Farhan M, Shahzad L, Ghafoor GZ. Phyto- and bio-management of metal(loid)-contaminated soil by inoculating resistant bacteria: evaluating tolerance of treated rice plant and soil with its efficiency. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:122524-122536. [PMID: 37968485 DOI: 10.1007/s11356-023-30769-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Anthropogenic activities are increasing the amount of heavy metals and metalloids in the environment on a global scale, harming all living things and necessitating the employment of bioremediation procedures. Metal-resistant bacteria were used to clean polluted soil and promote plant growth; this approach has gained attention in recent years for bioremediation of heavy metal-contaminated systems. We studied the effects of chromium and lithium in Oryza sativa under controlled conditions. In the present study, lithium concentration was applied 50 ppm to 200 ppm according to the dose tolerance level, while the concentration of chromium was 10 ppm throughout the experimental setup due to its concentration observed up to 10 ppm in the targeted soil, which is present in Kasur area Punjab, Pakistan, for rice crop production in future perspective. The results reflect that plants with high lithium concentration have shown decreased plant growth and development, but due to bacterial presence, they thrived until harvesting stage. Due to increase in stress concentration up to 200 ppm, decline in plant growth was observed, but after bacterial inoculation, better growth was seen (chlorophyll content increased to 40, and panicle numbers were more than 13). Our findings reveal that lithium and chromium have a direct negative impact on Oryza sativa, which can be minimized by utilizing halophilic microbes (Klebsiella pneumonia and Enterobacter cloacae) through soil-plant system.
Collapse
Affiliation(s)
- Zainab Tahir
- Sustainable Development Study Centre, Government College University, Lahore, 5400, Pakistan
| | - Muhammad Umar Hayyat
- Sustainable Development Study Centre, Government College University, Lahore, 5400, Pakistan
| | - Qaiser Farid Khan
- Sustainable Development Study Centre, Government College University, Lahore, 5400, Pakistan.
| | - Faiza Sharif
- Sustainable Development Study Centre, Government College University, Lahore, 5400, Pakistan
| | - Muhammad Farhan
- Sustainable Development Study Centre, Government College University, Lahore, 5400, Pakistan
| | - Laila Shahzad
- Sustainable Development Study Centre, Government College University, Lahore, 5400, Pakistan
| | - Gul Zareen Ghafoor
- Sustainable Development Study Centre, Government College University, Lahore, 5400, Pakistan
| |
Collapse
|
5
|
Shan D, Wen X, Guan X, Fang H, Liu Y, Qin M, Wang H, Xu J, Lv J, Zhao J, Chen H. Pubertal lead exposure affects ovary development, folliculogenesis and steroidogenesis by activation of IRE1α-JNK signaling pathway in rat. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114919. [PMID: 37086621 DOI: 10.1016/j.ecoenv.2023.114919] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/03/2023]
Abstract
Epidemic studies showed that lead exposures are associated with various female reproductive dysfunctions, including infertility, miscarriage, preterm delivery, and early menopause. However, the mechanism involved is still unclear. In the current study, SD rats were exposed to lead at doses of 0, 5, 25, 50 or 250 mg/L through drinking water from postnatal day 21-56. Lead exposures did not affect the body weight or ovary weight. However, the puberty initiation (ages by which vagina opens and estrous cycle occurs) was significantly delayed by as many as 5.8 and 6.8 days respectively (P < 0.05). Also, lead exposures disrupted the estrous cycles, reduced the numbers of primordial and primary follicles and increased the number of atretic follicles by adult. Furthermore, for the highest does group, serum levels of progesterone and testosterone decreased by 80.2% (P < 0.01) and 49.9% (P < 0.05) respectively, while estradiol level increased by 69.8% (P < 0.01). Western blot analyses indicated that lead exposures specifically down-regulated the expressions of steroidogenic protein STAR, CYP17A1, and HSD3B1, while up-regulated FSHR and CYP19A1. Also, the exposure stimulated the endoplasmic reticulum stress (ERS)-related IRE1α-JNK signaling pathway members. Such activation may also result in apoptosis since the death-signaling molecules CHOP and cleaved-CASP3 were up-regulated while BCL2 was down-regulated. In conclusion, lead exposure during juvenile and puberty significantly affected ovary development and functions. The effects may relate to ERS response since the 6 members related to the pathway were all consistently activated.
Collapse
Affiliation(s)
- Dan Shan
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xin Wen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoju Guan
- Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hangping Fang
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yijia Liu
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Mengjie Qin
- Department of Pharmacology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Hu Wang
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jingfeng Xu
- Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Jieqiang Lv
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Junzhao Zhao
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| | - Haolin Chen
- Department of Gynecology and Obstetrics, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Key Laboratory of Children Genitourinary Diseases of Wenzhou City, Department of Pediatric Urology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Zhejiang Provincial Key Laboratory of Anesthesiology, Department of Anesthesiology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Department of Pharmacology, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|