1
|
Wang L, Wang S, Ren P, Li J, Lu X, Li W, Tang Y. Enhanced immobilization of trace nickel by nanoplastic-Fe-Mn oxide complexes in sedimentary systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177913. [PMID: 39662419 DOI: 10.1016/j.scitotenv.2024.177913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/24/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
Fe/Mn oxides are widely distributed mineral components in marine sediments and act as significant scavengers of trace metals. The emergence of plastic-rock complexes has led to an increasing recognition that plastics may influence the environmental behavior of minerals. Plastics, especially nanoplastics, can affect the formation of Fe/Mn oxides and their ability to immobilize heavy metals. In this study, the role of polystyrene nanoplastics (PS NPs) in the mineralization of FeMn oxides and their effects on the immobilization of heavy metals (using Ni(II) as an example) at the trace concentrations in the environment were investigated. Characterization analysis indicated that PS NPs not only adsorb Fe and Mn ions from the environment through electrostatic attraction (the force that draws together objects with opposite electrical charges) but also serve as a substrate for the heterogeneous nucleation and growth of FeMn oxides. The large specific surface area of the PS NPs provides a site for the growth of FeMn. This results in smaller particle sizes and larger specific surface areas for the generated FeMn oxides. Consequently, Fe-PS-Mn@SiO2 exhibits significantly greater adsorption efficiency for Ni(II) under various environmental conditions (such as different pH and salinity) compared to Fe-Mn@SiO2. Additionally, Fe-PS-Mn@SiO2 remained stable under sunlight at 60 °C over 1.5 years. These findings presented new insights into the impact of NPs on mineral formation and environmental behavior, expanding our understanding of the actual fate of NPs in sediment environments.
Collapse
Affiliation(s)
- Lijuan Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China
| | - Siqing Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China
| | - Pengju Ren
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China
| | - Jiangpeng Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China
| | - Xiao Lu
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China
| | - Wenqiu Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China
| | - Yuanyuan Tang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, 1088 Xueyuan Blvd, Nanshan District, Shenzhen 518055, PR China.
| |
Collapse
|
2
|
Li C, Zhang Q, Zhang X, Li K, Yuan F, Sun Z. The stabilization ability of NaA zeolite derived from fly ash for lead and cadmium in soil: Mechanisms and evaluation of effectiveness. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173834. [PMID: 38851354 DOI: 10.1016/j.scitotenv.2024.173834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
Developing technologies aimed at ecologically restoring is of great significance in addressing the problem of heavy metal pollution. In this study, NaA zeolites (FAZ) originated from fly ash with outstanding performance were prepared by alkali fusion hydrothermal method and used for the solidification and stabilization of heavy metals in soil. After systematic evaluation, it was found that FAZ may lower the leaching concentration of lead (Pb) in soil to <1 mg/kg and increase the stabilization rate of Pb to 80 % in the single Pb-contaminated soil, lower the leaching concentration of cadmium (Cd) in soil to <3 mg/kg and increase the stabilization rate of Cd to 60 % in the single Cd-contaminated soil, and lower the leaching concentration of Pb to 0.15 mg/kg and the leaching concentration of Cd to 0.74 mg/kg in PbCd complex polluted soil. Additionally, Pb stabilization rates reach 60 % and Cd stabilization rates reach 30 %, respectively. Ion exchange is primarily responsible for the adsorption and solidification of Pb and Cd in soil by FAZ. Generally, FAZ has a wide range of applications in the rehabilitation of contaminated soil and significantly lowers the level of heavy metal pollution in soil.
Collapse
Affiliation(s)
- Chunquan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Qiongli Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Xiangwei Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Kun Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Fang Yuan
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China.
| |
Collapse
|
3
|
Zeng Y, Xu Z, Dong B. Enhanced Cu 2+ and Cd 2+ removal by a novel co-pyrolysis biochar derived from sewage sludge and phosphorus tailings: adsorption performance and mechanisms. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:396. [PMID: 39180627 DOI: 10.1007/s10653-024-02186-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
The reutilization of municipal wastes has always been one of the hottest subjects of sustainable development study. In this study, a novel biochar co-pyrolyzed from municipal sewage sludge and phosphorus tailings was produced to enhance the adsorption performance of the composite on Cu2+ and Cd2+. The maximum Cu2+ and Cd2+ adsorption capacity of SSB-PT were 44.34 and 45.91 mg/g, respectively, which were much higher than that of sewage sludge biochar (5.21 and 4.58 mg/g). Chemisorption dominated the whole adsorption process while multilayer adsorption and indirect interaction were also involved. According to the result of X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectrum (XPS), the load of CO32-, Mg2+, and Ca2+ on the surface of SSB-PT enhanced the precipitation and ion exchange effect. Posnjakite and CdCO3 were formed after the adsorption of Cu2+ and Cd2+, respectively. Besides, complexation, and metal-π interaction were also involved during the adsorption process. Therefore, this study offered a promising method to reuse sewage sludge and phosphorus tailings as an effective adsorbent.
Collapse
Affiliation(s)
- Yifan Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zuxin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
4
|
He L, Wang Y, Ding C, Huang G, Tu X, Zhou Z, Yin Y, Tang X, Guo Z, Li Z, Zhang T, Wang X, Zheng S. Selective and efficient immobilization of cadmium in soil by layered double hydroxides intercalated with the mercaptosuccinic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173473. [PMID: 38788936 DOI: 10.1016/j.scitotenv.2024.173473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Cadmium (Cd) contamination in cropland poses a significant threat to the quality of agricultural products, but even though in-situ remediation has been extensively applied, non-selective immobilization remains an issue. In order to develop a material that specifically immobilizes Cd in soil, a layered double hydroxide, intercalated with mercaptosuccinic acid (MSA-CFA), was synthesized through co-precipitation. In this case, the MSA-CFA's maximum adsorption capacity was increased from the 513.8 mg·g-1 for unintercalated hydrotalcite CFA to 692.6 mg·g-1. Besides, MSA-CFA efficiently removed 99.25 % of Cd from soil water-extract solution and immobilized up to 70.03 % of bio-available Cd. However, interestingly, its immobilization effects on beneficial metal elements Fe, Mn and Zn were milder, being equivalent to 2/7, 5/7 and 1/2 that of lime, respectively. Moreover, XRD and XPS techniques revealed isomorphous substitution with calcium and sulfhydryl complexation during the Cd adsorption by MSA-CFA. Compared with CFA, the increased adsorption capacity of MSA-CFA for Cd was due to intercalated MSA acting as a new adsorption site, while the enhanced selectivity was contributed by sulfhydryl's affinity for Cd. Altogether, MSA-CFA showed great promise as a competitive and highly efficient candidate amendment in Cd-contaminated soil remediation.
Collapse
Affiliation(s)
- Liqin He
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yurong Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Changfeng Ding
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Gaoxiang Huang
- School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Xiangming Tu
- Agricultural Ecology and Resource Protection Agency of Jiangxi Province, Nanchang 330046, China
| | - Zhigao Zhou
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuepeng Yin
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Tang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihong Guo
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyao Li
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taolin Zhang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingxiang Wang
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China; Ecological Experimental Station of Red Soil, Chinese Academy of Sciences, Yingtan 335211, China.
| | - Shun'an Zheng
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| |
Collapse
|
5
|
Zeng W, Lu Y, Zhou J, Zhang J, Duan Y, Dong C, Wu W. Simultaneous removal of Cd(II) and As(V) by ferrihydrite-biochar composite: Enhanced effects of As(V) on Cd(II) adsorption. J Environ Sci (China) 2024; 139:267-280. [PMID: 38105054 DOI: 10.1016/j.jes.2023.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 12/19/2023]
Abstract
The coexistence of cadmium (Cd(II)) and arsenate (As(V)) pollution has long been an environmental problem. Biochar, a porous carbonaceous material with tunable functionality, has been used for the remediation of contaminated soils. However, it is still challenging for the dynamic quantification and mechanistic understanding of the simultaneous sequestration of multi-metals in biochar-engineered environment, especially in the presence of anions. In this study, ferrihydrite was coprecipitated with biochar to investigate how ferrihydrite-biochar composite affects the fate of heavy metals, especially in the coexistence of Cd(II) and As(V). In the solution system containing both Cd(II) and As(V), the maximum adsorption capacities of ferrihydrite-biochar composite for Cd(II) and As(V) reached 82.03 µmol/g and 531.53 µmol/g, respectively, much higher than those of the pure biochar (26.90 µmol/g for Cd(II), and 40.24 µmol/g for As(V)) and ferrihydrite (42.26 µmol/g for Cd(II), and 248.25 µmol/g for As(V)). Cd(II) adsorption increased in the presence of As(V), possibly due to the changes in composite surface charge in the presence of As(V), and the increased dispersion of ferrihydrite by biochar. Further microscopic and mechanistic results showed that Cd(II) complexed with both biochar and ferrihydrite, while As(V) was mainly complexed by ferrihydrite in the Cd(II) and As(V) coexistence system. Ferrihydrite posed vital importance for the co-adsorption of Cd(II) and As(V). The different distribution patterns revealed by this study help to a deeper understanding of the behaviors of cations and anions in the natural environment.
Collapse
Affiliation(s)
- Wenjun Zeng
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China; South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China
| | - Yang Lu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China
| | - Jingyan Zhou
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China
| | - Jie Zhang
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China
| | - Yuanxiao Duan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China
| | - Changxun Dong
- College of Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wencheng Wu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China; Guangdong Engineering & Technology Research Center for System Control of Livestock and Poultry breeding Pollution, Guangzhou 510655, China.
| |
Collapse
|
6
|
Chinnappa K, Bai CDG, Srinivasan PP. Nanocellulose-stabilized nanocomposites for effective Hg(II) removal and detection: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30288-30322. [PMID: 38619767 DOI: 10.1007/s11356-024-33105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/22/2024] [Indexed: 04/16/2024]
Abstract
Mercury pollution, with India ranked as the world's second-largest emitter, poses a critical environmental and public health challenge and underscores the need for rigorous research and effective mitigation strategies. Nanocellulose is derived from cellulose, the most abundant natural polymer on earth, and stands out as an excellent choice for mercury ion remediation due to its remarkable adsorption capacity, which is attributed to its high specific surface area and abundant functional groups, enabling efficient Hg(II) ion removal from contaminated water sources. This review paper investigates the compelling potential of nanocellulose as a scavenging tool for Hg(II) ion contamination. The comprehensive examination encompasses the fundamental attributes of nanocellulose, its diverse fabrication techniques, and the innovative development methods of nanocellulose-based nanocomposites. The paper further delves into the mechanisms that underlie Hg removal using nanocellulose, as well as the integration of nanocellulose in Hg detection methodologies, and also acknowledges the substantial challenges that lie ahead. This review aims to pave the way for sustainable solutions in mitigating Hg contamination using nanocellulose-based nanocomposites to address the global context of this environmental concern.
Collapse
Affiliation(s)
- Karthik Chinnappa
- Department of Biotechnology, St. Joseph's College of Engineering, OMR, Chennai, 600119, Tamil Nadu, India
| | | | - Pandi Prabha Srinivasan
- Department of Biotechnology, Sri Venkateswara College of Engineering, Sriperumbudur Taluk, Chennai, 602117, Tamil Nadu, India
| |
Collapse
|
7
|
Wang J, Wang G, Deng X, Luo M, Xu S, Jiang B, Yuan G, An S, Liu J. One-pot synthesis of novel mesoporous FeOOH modified NaZrH(PO 4) 2·H 2O for the enhanced removal of Co(II) from aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:5912-5927. [PMID: 38133758 DOI: 10.1007/s11356-023-31541-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
One-pot synthesis of a novel mesoporous hydroxyl oxidize iron functional Na-zirconium phosphate (FeOOH-NaZrH(PO4)2·H2O) composites was firstly characterized and investigated its Co(II) adsorption from aqueous solution. Compared to NaZrH(PO4)2·H2O (65.7 mg⋅g-1), the maximum Co(II) adsorption capacity of FeOOH-NaZrH(PO4)2·H2O was improved to be 95.1 mg⋅g-1. BET verified the mesoporous structures of FeOOH-NaZrH(PO4)2·H2O with a larger pore volume than NaZrH(PO4)2·H2O. High pH values, initial Co(II) concentration, and temperature benefited the Co(II) adsorption. Kinetics, isotherms, and thermodynamics indicated an endothermic, spontaneous chemisorption process. FeOOH-NaZrH(PO4)2·H2O has a better Co(II) adsorption selectivity than that of NaZrH(PO4)2·H2O. In particular, FeOOH-NaZrH(PO4)2·H2O exhibited an outstanding reusability after ten cycles of tests. The main possible mechanism for adsorbents uptake Co(II) involved in ion exchange, electrostatic interaction, and -OH, Zr-O bond coordination based on FTIR and XPS analysis. This work presents a feasible strategy to prepare novel modified zirconium phosphate composites for extracting Co(II) from solutions and providing a new insight into the understanding of Co(II) adsorption in the real nuclear Co(II)-containing wastewater.
Collapse
Affiliation(s)
- Jing Wang
- Chengdu University of Technology, College of Nuclear Technology and Automation Engineering, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Guangxi Wang
- Chengdu University of Technology, College of Nuclear Technology and Automation Engineering, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Xiaoqin Deng
- Sichuan Management and Monitoring Center Station of Radioactive Environment, Chengdu, 610039, People's Republic of China
| | - Maodan Luo
- Sichuan Management and Monitoring Center Station of Radioactive Environment, Chengdu, 610039, People's Republic of China
| | - Su Xu
- Sichuan Management and Monitoring Center Station of Radioactive Environment, Chengdu, 610039, People's Republic of China
| | - Bing Jiang
- Sichuan Management and Monitoring Center Station of Radioactive Environment, Chengdu, 610039, People's Republic of China
| | - Guoyuan Yuan
- College of Chemistry and Chemical Engineering, Chongqing University of Science and Technology, Chongqing, 401331, People's Republic of China
| | - Shuwen An
- Chengdu University of Technology, College of Nuclear Technology and Automation Engineering, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China
| | - Jun Liu
- Chengdu University of Technology, College of Nuclear Technology and Automation Engineering, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China.
- Applied Nuclear Technology in Geosciences Key Laboratory of Sichuan Province, Chengdu University of Technology, 1#, Dongsanlu, Erxianqiao, Chengdu, 610059, Sichuan, People's Republic of China.
| |
Collapse
|