1
|
Gao FZ, Hu LX, Liu YS, Yang HY, He LY, Bai H, Liu F, Jin XW, Ying GG. Unveiling the prevalence of metal resistance genes and their associations with antibiotic resistance genes in heavy metal-contaminated rivers. WATER RESEARCH 2025; 281:123699. [PMID: 40280009 DOI: 10.1016/j.watres.2025.123699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Heavy metals can drive antibiotic resistance through co-selection mechanisms. Current knowledge predominantly focuses on relationships between metal resistance genes (MRGs) and antibiotic resistance genes (ARGs) at the river reach scale. It remains unclear the links between MRGs and ARGs at the large river basin scale, as does the role of MRG-ARG colocalization in resistance dissemination. This study employed metagenomics to investigate the prevalence of MRGs in the Xiangjiang River, a historically heavy metal-contaminated river, and their connections with ARGs by combining resistome profiling with colocalization analyses. Results revealed the significant prevalence of MRGs in the river compared to nationwide rivers, but it showed weak correlations with metal concentrations in either water or sediment. The prevalence of MRGs in water was weakly driven by abiotic parameters, but was strongly influenced by microbial composition. The proportion of water MRGs attributable to sewage sources was tightly positively correlated with MRG abundances, suggesting the significant contribution of external waste input. Plasmid-originated MRGs were more abundant in water, while chromosomal MRGs dominated in sediment, indicating medium-specific transfer dynamics. The profile of MRGs were strongly correlated with that of ARGs in both media, encompassing several clinically high-risk ARGs. However, MRG-ARG colocalization events were rarely detected (eight instances in total), consistent with low frequencies in nationwide rivers (3.5 % in sediment; 2.0 % in water), implying their limited roles in resistance dissemination. Overall, the findings enhance our understanding of riverine metal resistome and its associations with antibiotic resistome, while emphasize the rare presence of MRG-ARG colocalization in riverine environments.
Collapse
Affiliation(s)
- Fang-Zhou Gao
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Li-Xin Hu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Hai-Yan Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Hong Bai
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China
| | - Feng Liu
- Key Laboratory of Agro-Ecological Processes in Subtropical Regions, Changsha Research Station for Agricultural & Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xiao-Wei Jin
- China National Environmental Monitoring Centre, Beijing 100012, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, China; School of Environment, South China Normal University, University Town, Guangzhou, China.
| |
Collapse
|
2
|
Yang C, Yan S, Zhang B, Yao X, Mo J, Rehman F, Guo J. Spatiotemporal distribution of the planktonic microbiome and antibiotic resistance genes in a typical urban river contaminated by macrolide antibiotics. ENVIRONMENTAL RESEARCH 2024; 262:119808. [PMID: 39153565 DOI: 10.1016/j.envres.2024.119808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/03/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
The widespread application of macrolide antibiotics has caused antibiotic resistance pollution, threatening the river ecological health. In this study, five macrolide antibiotics (azithromycin, clarithromycin, roxithromycin, erythromycin, and anhydro erythromycin A) were monitored in the Zao River across three hydrological periods (April, July, and December). Simultaneously, the changes in antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and planktonic bacterial communities were determined using metagenomic sequencing. A clear pollution gradient was observed for azithromycin and roxithromycin, with the concentrations in the dry season surpassing those in other seasons. The highest concentration was observed for azithromycin (1.36 μg/L). The abundance of MLS resistance genes increased along the Zao River during the dry season, whereas the opposite trend was obtained during the wet season. A significant correlation between the levels of MLS resistance genes and macrolide antibiotics was identified during the dry season. Notably, compared with the reference site, the abundance of transposase in the effluent from wastewater treatment plants (WWTPs) was significantly elevated in both dry and wet seasons, whereas the abundance of insertion sequences (IS) and plasmids declined during the dry season. The exposure to wastewater containing macrolide antibiotics altered the diversity of planktonic bacterial communities. The bacterial host for ARGs appeared to be Pseudomonas, primarily associated with multidrug subtypes. Moreover, the ARG subtypes were highly correlated with MGEs (transposase and istA). The partial least-squares path model (PLS-PM) demonstrated a positive correlation between the abundance of MGEs and ARGs, indicating the significance of horizontal gene transfer (HGT) in the dissemination of ARGs within the Zao River. Environmental variables, such as TN and NO3--N, were significantly correlated with the abundance of MGEs, ARGs, and bacteria. Collectively, our findings could provide insights into the shift patterns of the microbiome and ARGs across the contamination gradient of AZI and ROX in the river.
Collapse
Affiliation(s)
- Chuanmao Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Shiwei Yan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Baihuan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Xiunan Yao
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, China
| | - Fozia Rehman
- Interdisciplinary Research Center in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
3
|
Tipper HJ, Stanton IC, Payne RA, Read DS, Singer AC. Do storm overflows influence AMR in the environment and is this relevant to human health? A UK perspective on a global issue. WATER RESEARCH 2024; 260:121952. [PMID: 38906083 DOI: 10.1016/j.watres.2024.121952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
Antimicrobial resistance (AMR) is a global public health threat, and the environment has been identified as an important reservoir for resistant microorganisms and genes. Storm overflows (SOs) discharge wastewater and stormwater, and are found throughout many wastewater networks. While there are no data currently showing the impact of SOs on the environment with respect to AMR in the UK, there is a small but growing body of evidence globally highlighting the potential role of SOs on environmental AMR. This review aims to provide an overview of the current state of SOs, describe global data investigating the impact of SOs on environmental AMR, and discuss the implications of SOs regarding AMR and human health. In addition, the complexities of studying the effects of SOs are discussed and a set of priority research questions and policy interventions to tackle a potentially emerging threat to public health are presented.
Collapse
Affiliation(s)
- Holly J Tipper
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, England.
| | - Isobel C Stanton
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, England
| | - Rachel A Payne
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, England
| | - Daniel S Read
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, England
| | - Andrew C Singer
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, England
| |
Collapse
|
4
|
Zhang Y, Xu Z, Chu W, Zhang J, Jin W, Ye C. Tracking the source of antibiotic resistome in the stormwater network drainage in the presence of sewage illicit connections. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168989. [PMID: 38036118 DOI: 10.1016/j.scitotenv.2023.168989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/02/2023]
Abstract
Stormwater pipes are illicitly connected with sewage in many countries, which means that sewage enters stormwater pipes and the drainage is discharged to surface water without any treatment. Sewage contains more pathogens and highly risky antibiotic resistance genes (ARGs) than surface runoff. Therefore, sewage may alter the microbial and ARG compositions in stormwater pipe drainage, which in turn leads to an increased risk of resistance in surface water. However, the effects of sewage on ARGs in the drainage of stormwater networks have not been systematically studied. This study characterized the microbial and ARG composition of several environmental compartments of a typical stormwater network and quantified their contributions to those in the drainage. This network transported ARGs and microorganisms from sewage, sediments in stormwater pipes, and surface runoff into the drainage and thus into the river. According to metagenomic analysis, multidrug resistance genes were most abundant in all samples and the numbers and relative abundance of ARGs in the drainage collected during wet weather were comparable to that of sewage. The results of SourceTracker showed that the relative contribution of sewage was double that of rainwater and surface runoff in the drainage during wet weather for both microorganisms and ARGs. Desulfovibrio, Azoarcus, and Sulfuritalea were connected with the greatest number of ARGs and were most abundant in the sediments of stormwater pipes. Furthermore, stochastic processes were found to dominate ARG and microbial assembly, as the effects of high hydrodynamic intensity outweighed the effects of environmental filtration and species interactions. The findings of this study can increase our understanding of ARGs in stormwater pipe drainage, a crucial medium linking ARGs in sewage to environmental ARGs.
Collapse
Affiliation(s)
- Yu Zhang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Zuxin Xu
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China.
| | - Wenhai Chu
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China.
| | - Jingyi Zhang
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Wei Jin
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| | - Cheng Ye
- School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Li S, Duan G, Xi Y, Chu Y, Li F, Ho SH. Insights into the role of extracellular polymeric substances (EPS) in the spread of antibiotic resistance genes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123285. [PMID: 38169168 DOI: 10.1016/j.envpol.2023.123285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/28/2023] [Accepted: 12/30/2023] [Indexed: 01/05/2024]
Abstract
Antibiotic resistance genes (ARG) are prevalent in aquatic environments. Discharge from wastewater treatment plants is an important point source of ARG release into the environment. It has been reported that biological treatment processes may enhance rather than remove ARG because of their presence in sludge. Attenuation of ARG in biotechnological processes has been studied in depth, showing that many microorganisms can secrete complex extracellular polymeric substances (EPS). These EPS can serve as multifunctional elements of microbial communities, involving aspects, such as protection, structure, recognition, adhesion, and physiology. These aspects can influence the interaction between microbial cells and extracellular ARG, as well as the uptake of extracellular ARG by microbial cells, thus changing the transformative capability of extracellular ARG. However, it remains unclear whether EPS can affect horizontal ARG transfer, which is one of the main processes of ARG dissemination. In light of this knowledge gap, this review provides insight into the role of EPS in the transmission of ARGs; furthermore, the mechanism of ARG spread is analyzed, and the molecular compositions and functional properties of EPS are summarized; also, how EPS influence ARG mitigation is addressed, and factors impacting how EPS facilitate ARG during wastewater treatment are summarized. This review provides comprehensive insights into the role of EPS in controlling the transport and fate of ARG during biodegradation processes at the mechanistic level.
Collapse
Affiliation(s)
- Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Guoxiang Duan
- Heilongjiang Academy of Chinese Medical Sciences, Harbin, China
| | - Yucan Xi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Yuhao Chu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Fengxiang Li
- Key Laboratory of Pollution Processes and Environmental Criteria at Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
6
|
Morina JC, Franklin RB. Drivers of Antibiotic Resistance Gene Abundance in an Urban River. Antibiotics (Basel) 2023; 12:1270. [PMID: 37627690 PMCID: PMC10451346 DOI: 10.3390/antibiotics12081270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/28/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
In this study, we sought to profile the abundances and drivers of antibiotic resistance genes in an urban river impacted by combined sewage overflow (CSO) events. Water samples were collected weekly during the summer for two years; then, quantitative PCR was applied to determine the abundance of resistance genes associated with tetracycline, quinolones, and β-lactam antibiotics. In addition to sampling a CSO-impacted site near the city center, we also sampled a less urban site ~12 km upstream with no proximal sewage inputs. The tetracycline genes tetO and tetW were rarely found upstream, but were common at the CSO-impacted site, suggesting that the primary source was untreated sewage. In contrast, ampC was detected in all samples indicating a more consistent and diffuse source. The two other genes, qnrA and blaTEM, were present in only 40-50% of samples and showed more nuanced spatiotemporal patterns consistent with upstream agricultural inputs. The results of this study highlight the complex sources of ARGs in urban riverine ecosystems, and that interdisciplinary collaborations across diverse groups of stakeholders are necessary to combat the emerging threat of antibiotic resistance through anthropogenic pollution.
Collapse
Affiliation(s)
- Joseph C Morina
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Rima B Franklin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|