1
|
Li Z, Li X. Bibliometric analysis and systematic review on the electrokinetic remediation of contaminated soil and sediment. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 47:15. [PMID: 39666177 DOI: 10.1007/s10653-024-02330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Electrokinetic remediation (EKR) is a proficient, environmentally friendly separation technology for in-situ removal of contaminants in soil/sediment, distinguished for its ease of implementation and minimal prerequisites compared to other remediation technologies. To comprehensively understand the research focus and progress related to EKR of contaminated soil/sediment, a bibliometric analysis was conducted on 1593 publications retrieved from the Web of Science Core Collection (WOSCC) database. This analysis utilized data mining and knowledge discovery techniques through Bibliometrix, VOSviewer, and CiteSpace software. The results revealed a rising trend in annual publication numbers, with China leading in the number of publications. The primary journals in this field included the Journal of Hazardous Materials, Chemosphere, and Separation and Purification Technology. The primary disciplines contributed to this field included "Environmental Sciences", "Engineering, Environmental", "Engineering, Chemical", and "Electrochemistry". Keyword co-occurrence and burst analysis indicated that current EKR-related research mainly focuses on the remediation of soil/sediments contaminated by heavy metals (HMs) and organic pollutants (OPs). Furthermore, the EKR remediation improvement method emerged as the prevailing and future research hotspots and development directions. Future research could integrate numerical simulations and various methodologies to predict and assess the migration of pollutants and the efficiency of remediation efforts. Additionally, these studies could explore the effects of EKR on the physicochemical properties and microbial diversity of soil/sediment to provide a theoretical foundation for applying EKR in soil/sediment remediation.
Collapse
Affiliation(s)
- Zhonghong Li
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Xiaoguang Li
- Basin Research Center for Water Pollution Control, Chinese Research Academy of Environment Sciences, Beijing, 100012, China
| |
Collapse
|
2
|
Li Y, Xu C, Liao Y, Chen X, Chen J, Yang F, Gao M. Bio-energy-powered microfluidic devices. BIOMICROFLUIDICS 2024; 18:061303. [PMID: 39734663 PMCID: PMC11672206 DOI: 10.1063/5.0227248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/29/2024] [Indexed: 12/31/2024]
Abstract
Bio-microfluidic technologies offer promising applications in diagnostics and therapy, yet they face significant technical challenges, particularly in the need for external power sources, which limits their practicality and user-friendliness. Recent advancements have explored innovative methods utilizing body fluids, motion, and heat to power these devices, addressing the power supply issue effectively. Among these, body-motion and body-heat-powered systems stand out for their potential to create self-sustaining, wearable, and implantable devices. In this Perspective, we focus on the principles and applications of hydrovoltaic cells, biofuel cells, and piezoelectric and triboelectric nanogenerators. Recent strides in energy conversion efficiency, coupled with the development of biocompatible and durable materials, are driving innovation in bio-integrated electronics. Integration with bio-microfluidic platforms further enhances the linkage to the human body and the potential of these devices for personalized healthcare applications. Ongoing research into these areas promises to deliver sustainable and user-friendly solutions for continuous monitoring, diagnostics, and therapy, potentially revolutionizing the landscape of healthcare delivery.
Collapse
Affiliation(s)
- Yuhan Li
- College of Engineering and Technology, Southwest University, Chongqing 400716, China
| | - Chuangyi Xu
- School of Traffic & Transportation Engineering, Central South University, Changsha 410000, China
| | - Yifan Liao
- College of Engineering and Technology, Southwest University, Chongqing 400716, China
| | | | - Jiang Chen
- Department of Ophthalmology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Fan Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mingyuan Gao
- Author to whom correspondence should be addressed:
| |
Collapse
|
3
|
Lv J, Zhao Q, Wang K, Jiang J, Ding J, Wei L. A critical review of approaches to enhance the performance of bio-electro-Fenton and photo-bio-electro-Fenton systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121633. [PMID: 38955044 DOI: 10.1016/j.jenvman.2024.121633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/12/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
The development of sustainable advanced energy conversion technologies and efficient pollutant treatment processes is a viable solution to the two global crises of the lack of non-renewable energy resources and environmental harm. In recent years, the interaction of biological and chemical oxidation units to utilize biomass has been extensively studied. Among these systems, bio-electro-Fenton (BEF) and photo-bio-electro-Fenton (PBEF) systems have shown prospects for application due to making rational and practical conversion and use of energy. This review compared and analyzed the electron transfer mechanisms in BEF and PBEF systems, and systematically summarized the techniques for enhancing system performance based on the generation, transfer, and utilization of electrons, including increasing the anode electron recovery efficiency, enhancing the generation of reactive oxygen species, and optimizing operational modes. This review compared the effects of different methods on the electron flow process and fully evaluated the benefits and drawbacks. This review may provide straightforward suggestions and methods to enhance the performance of BEF and PBEF systems and inspire the reader to explore the generation and utilization of sustainable energy more deeply.
Collapse
Affiliation(s)
- Jiaqi Lv
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Kun Wang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Jing Ding
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environments (SKLURE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Pednekar RR, Rajan AP. Unraveling the contemporary use of microbial fuel cell in pesticide degradation and simultaneous electricity generation: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:144-166. [PMID: 38048001 DOI: 10.1007/s11356-023-30782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023]
Abstract
Pesticide is an inevitable substance used worldwide to kill pests, but their indiscriminate use has posed serious complications to health and the environment. Various physical, chemical, and biological methods are employed for pesticide treatment, but this paper deals with microbial fuel cell (MFC) as a futuristic technology for pesticide degradation with electricity production. In MFC, organic compounds are utilized as the carbon source for electricity production and the generation of electrons which can be replaced with pollutants such as dyes, antibiotics, and pesticides as carbon sources. However, MFC is been widely studied for a decade for electricity production, but its implementation in pesticide degradation is less known. We fill this void by depicting a real picture of the global pesticide scenario with an eagle eye view of the bioremediation techniques implemented for pesticide treatment with phytoremediation and rhizoremediation as effective techniques for efficient pesticide removal. The enormous literature survey has revealed that not many researchers have ventured into this new arena of MFC employed for pesticide degradation. Based on the Scopus database, an increase in annual trend from 2014 to 2023 is observed for MFC-implemented pesticide remediation. However, a novel MFC to date for effective remediation of pesticides with simultaneous electricity generation is discussed for the first time. Furthermore, the limitation of MFC technology and the implementation of MFC and rhizoremediation as a clubbed system which is the least applied can be seen as promising and futuristic approaches to enhance pesticide degradation by bacteria and electricity as a by-product.
Collapse
Affiliation(s)
- Reshma Raviuday Pednekar
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Anand Prem Rajan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
5
|
Zhang C, Wang Q, Qin R, Li Z, Wang Y, Ke Z, Ren G. Natural hematite as low-cost auxiliary material for improving soil remediation by in-situ microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:84141-84151. [PMID: 37355514 DOI: 10.1007/s11356-023-28387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023]
Abstract
Microbial-mineral interaction has a broad application prospect in the field of environmental remediation of organic pollutants. However, the disadvantages of long repair cycle and low repair rate limit its industrial application. In this study, natural hematite was used as an auxiliary material for soil remediation in a bio-electrochemical system. It was found that the power density of soil microbial fuel cell (SMFC) system composed of 2.0 mm hematite was 2.889 mW/m2, which is 2.7 times compared with the blank group (1.068 mW/m2) in the particle size optimization experiment. A similarly increased power density (1.068 to 2.467 mW/m2) was observed when the hematite content changed from 0 to 20% in the concentration optimization experiment. Under 20% and 2.0-mm hematite condition, the phenol removal rate was closed to 99% after 7 days, which is 1.9-folds compared with blank control (53%). These results suggest that addition of hematite enhances soil porosity and conductivity, and increases the number of electron acceptors in soil. These findings inspire that this economic and abundant natural mineral is expected to be a potential auxiliary material in the field of soil organic pollutant purification, and expand the understanding of interactions between hematite and microorganisms in nature.
Collapse
Affiliation(s)
- Chengbin Zhang
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Qijun Wang
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Runjie Qin
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zitong Li
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Ye Wang
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zunzhuang Ke
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Guiping Ren
- The Key Laboratory of Mineral Resources in Western China (Gansu Province), School of Earth Sciences, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|