1
|
Nille OS, Kolekar AG, Devre PV, Koparde SV, Sawat AH, Sohn D, Patole SP, Anbhule PV, Gore AH, Kolekar GB. Nanocarbon eco-hydrogel kit: on-site visual metal ion sensing and dye cleanup, advancing the circular economy in environmental remediation. Analyst 2024; 150:69-80. [PMID: 39588732 DOI: 10.1039/d4an00914b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The naked-eye detection of hazardous pollutants through simple and cost-effective techniques is of great interest to the scientific community and related stakeholders in analytical science. The present study emphases the development of a stimuli-responsive probe by encountering sophisticated techniques for the detection of environmental pollutants. Herein, highly swellable and fluorescent-WTR-CDs-loaded HB-Alg/Gel@WTR-CDs was fabricated through a simple extrusion dripping method. The fluorescent WTR-CDs-loaded composite hydrogel showed rapid (within 10-15 min) naked-eye detection with high selectivity and sensitivity towards Cr6+ and Mn7+ ions over other metal ions. The developed probe had a linear detection range of 0-10 μg mL-1 with a detection limit of 0.28 μg mL-1 and 0.30 μg mL-1 for Cr6+ and Mn7+ ions, respectively. Interestingly, the hydrogel-based fluorescent sensor enabled on-site naked-eye detection of real water samples with good recovery. Additionally, the recyclability and reusability approach were employed for the removal of model pollutant dyes with Alg/Gel-carbon, which was synthesized using spent hydrogel beads after sensing. The present study demonstrates the tremendous potential applications of HB-Alg/Gel@WTR-CDs for simple, low-cost and fast visual detection of environmental pollutants. According to the analytical greenness evaluation (AGREE), the developed analytical method is green with an AGREE score of 0.81 and an ecofriendly circular-economy approach.
Collapse
Affiliation(s)
- Omkar S Nille
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India.
| | - Akanksha G Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India.
| | - Pooja V Devre
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Bardoli, Tarsadi-394350, Surat, Gujarat, India.
| | - Sneha V Koparde
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India.
| | - Aniket H Sawat
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India.
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Bardoli, Tarsadi-394350, Surat, Gujarat, India.
| | - Daewon Sohn
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul Campus, Seoul, South Korea
| | - Shashikant P Patole
- Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates.
| | - Prashant V Anbhule
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India.
| | - Anil H Gore
- Tarsadia Institute of Chemical Science, Uka Tarsadia University, Maliba Campus, Bardoli, Tarsadi-394350, Surat, Gujarat, India.
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur-416004, Maharashtra, India.
| |
Collapse
|
2
|
Koparde SV, Nille OS, Kolekar AG, Bote PP, Gaikwad KV, Anbhule PV, Pawar SP, Kolekar GB. Okra peel-derived nitrogen-doped carbon dots: Eco-friendly synthesis and multi-functional applications in heavy metal ion sensing, nitro compound detection and environmental remediation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 321:124659. [PMID: 38943759 DOI: 10.1016/j.saa.2024.124659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 07/01/2024]
Abstract
The present study explores the kitchen waste okra peels derived synthesis of nitrogen doped carbon dots (N-CDs) via simple carbonization followed by reflux method. The synthesized N-CDs was characterized using, TEM, XPS, FTIR, XRD, Raman, UV-Visible and Fluorescence Spectroscopy. The N-CDs emits bright blue emission at 420 nm with 12 % of quantum yield as well as it follows excitation dependent emission. Further, the N-CDs were employed as a fluorescence sensor for detection of hazardous metal ions and nitro compounds. Among various metal ions and nitro compounds, the N-CDs shows fluorescence quenching response towards Cr6+, and Mn7+ metal ions as well as 4-nitroaniline (4-NA) and picric acid (PA) with significant hypsochromic and bathochromic shift for Mn7+, 4-NA and PA respectively. The developed fluorescent probe shows relatively low limit of detection (LOD) of 1.46 µg/mL, 1.05 µg/mL, 2.1 µg/mL and 2.2 µg/mL for the above analytes respectively. The N-CDs did not show any significant interference with coexisting ions and successfully applied for real water sample analysis. In addition, circular economy approach was employed for adsorption of dyes by reactivating leftover waste carbon residue which was obtained after reflux. Thus, the kitchen waste valorization and circular economy approach based N-CDs have potential applications in the field of detection of emerging pollutants, and environmental remediation.
Collapse
Affiliation(s)
- Sneha V Koparde
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India; Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India
| | - Omkar S Nille
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India
| | - Akanksha G Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India
| | - Prachi P Bote
- Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India
| | - Kishor V Gaikwad
- Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India
| | - Prashant V Anbhule
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India
| | - Samadhan P Pawar
- Department of Chemistry, Rajarshi Chhatrapati Shahu College, Kolhapur-416003, (MS), India.
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry Shivaji University, Kolhapur-416004, (MS), India.
| |
Collapse
|
3
|
Kolekar AG, Nille OS, Koparde SV, Patil AS, Waghmare RD, Sohn D, Anbhule PV, Kolekar GB, Gokavi GS, More VR. Green, facial zinc doped hydrothermal synthesis of cinnamon derived fluorescent carbon dots (Zn-Cn-CDs) for highly selective and sensitive Cr 6+ and Mn 7+ metal ion sensing application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123413. [PMID: 37741103 DOI: 10.1016/j.saa.2023.123413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Carbon dots have demonstrated a great potential as luminescent nanoparticles in energy, drug delivery, sensors, and various biomedical applications as well as environmental pollutants and water analysis. Although, such nanoparticles appear to exhibit low toxicity compared to other semiconductor and metal based luminescent nanomaterials. Today, we know that toxicity of carbon dots (CDs) strongly depends on the protocol of fabrication. The various dopants or heteroatoms have been used to enhance the optical and physicochemical properties. In this work, zinc doped aqueous fluorescent Zn-Cn-CDs have been synthesized from cinnamon by hydrothermal synthesis method. The synthesized Zn-Cn-CDs were confirmed for their physicochemical properties by using various characterization techniques viz. UV-Vis. and spectrofluorometer for optical properties, Fourier transform infrared spectroscopy (FTIR) and XRD, as well as TEM and XPS, was done for morphological and chemical analysis. The successfully synthesized Zn-Cn-CDs showed outstanding optical performance for metal ion sensing applications. The developed heteroatom doped Zn-Cn-CDs as a fluorescent probe exhibited higher selectivity and sensitivity for Cr6+ and Mn7+ metal ions. The obtained results showed a better linear range with excellent limit of detection (LOD) 3.97 µg/mL and 2.05 µg/mL for Cr6+ and Mn7+ metal ions respectively. The low cost, simple and highly fluorescent probe can be effectively applicable for development of environmental pollutants sensing purposes.
Collapse
Affiliation(s)
- Akanksha G Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Omkar S Nille
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Sneha V Koparde
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Akshay S Patil
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul Campus, Seoul, South Korea
| | - Ravindra D Waghmare
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Daewon Sohn
- Department of Chemistry and Research Institute for Convergence of Basic Science, Hanyang University, Seoul Campus, Seoul, South Korea
| | - Prashant V Anbhule
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | - Govind B Kolekar
- Fluorescence Spectroscopy Research Laboratory, Department of Chemistry, Shivaji University, Kolhapur, Maharashtra, India
| | | | | |
Collapse
|
4
|
An Insight into the Combined Toxicity of 3,4-Dichloroaniline with Two-Dimensional Nanomaterials: From Classical Mixture Theory to Structure-Activity Relationship. Int J Mol Sci 2023; 24:ijms24043723. [PMID: 36835146 PMCID: PMC9959308 DOI: 10.3390/ijms24043723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/15/2023] Open
Abstract
The assessment and prediction of the toxicity of engineered nanomaterials (NMs) present in mixtures is a challenging research issue. Herein, the toxicity of three advanced two-dimensional nanomaterials (TDNMs), in combination with an organic chemical (3,4-dichloroaniline, DCA) to two freshwater microalgae (Scenedesmus obliquus and Chlorella pyrenoidosa), was assessed and predicted not only from classical mixture theory but also from structure-activity relationships. The TDNMs included two layered double hydroxides (Mg-Al-LDH and Zn-Al-LDH) and a graphene nanoplatelet (GNP). The toxicity of DCA varied with the type and concentration of TDNMs, as well as the species. The combination of DCA and TDNMs exhibited additive, antagonistic, and synergistic effects. There is a linear relationship between the different levels (10, 50, and 90%) of effect concentrations and a Freundlich adsorption coefficient (KF) calculated by isotherm models and adsorption energy (Ea) obtained in molecular simulations, respectively. The prediction model incorporating both parameters KF and Ea had a higher predictive power for the combined toxicity than the classical mixture model. Our findings provide new insights for the development of strategies aimed at evaluating the ecotoxicological risk of NMs towards combined pollution situations.
Collapse
|