1
|
Yang R, Li Z, Pitakrattanawong C, Zhu L, Li B, Fang L, Fan L, Song C, Meng S. Magnetic nanoparticle modified moss Biochar: A novel solution for effective removal of enrofloxacin from aquaculture water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123956. [PMID: 39754798 DOI: 10.1016/j.jenvman.2024.123956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/22/2024] [Accepted: 12/27/2024] [Indexed: 01/06/2025]
Abstract
The presence of residual antibiotics in water constitutes a potential threat to aquatic environments. Therefore, designing environmentally friendly and efficient biochar adsorbents is crucial. Aquaculture by-product moss (bryophyte) was transformed into biochar, which can eliminate antibiotics from wastewater through adsorption. This study successfully fabricated moss biochar (BC) and magnetically modified moss biochar (MBC), and explored their adsorption performance for enrofloxacin (ENR). Characterization analyses revealed that the specific surface area, total pore volume, and the quantity of functional groups of the MBC were significantly larger than those of the BC. The Langmuir isotherm model suggests that the maximum adsorption capacities of BC and MBC for ENR are 7.24 mg g⁻1 and 11.62 mg g⁻1. The adsorption process conforms to a pseudo-second-order kinetic model. Studies carried out at different temperatures disclose the spontaneous and endothermic thermodynamic characteristics of the system. Under neutral conditions, the adsorption efficiency attains its peak. The existence of various coexisting ions in water exerts a negligible influence on the adsorption process; furthermore, when the concentration of humic acid (HA) ranges from 0 to 20 mg/L, the removal rate remains above 90%. In actual water samples, the antibiotic removal rate can be as high as 96.84%. After three cycles of reuse, the structure of MBC remains unchanged while maintaining a high removal efficiency. The primary mechanisms for antibiotic adsorption by MBC involve electrostatic interactions, hydrophobic interactions, pore-filling effects, hydrogen bonding, and π-π interactions. This reusable magnetic moss biochar provides a promising research direction for effectively eliminating antibiotics from water sources.
Collapse
Affiliation(s)
- Ruonan Yang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Zhonghua Li
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China.
| | | | - Lei Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China.
| | - Bingzhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China.
| | - Longxiang Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| | - Limin Fan
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| | - Chao Song
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China; Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| | - Shunlong Meng
- Wuxi Fisheries College, Nanjing Agricultural University, 214081, Wuxi, PR China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, PR China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081, Wuxi, PR China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100000, Beijing, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081, Wuxi, PR China.
| |
Collapse
|
2
|
Chen X, Zhang Y, Liu J. A novel enrofloxacin-degrading fungus, Humicola sp. KC0924g, isolated from the rhizosphere sediment of the submerged macrophyte Vallisneria spiralis L. Int Microbiol 2024; 27:1693-1705. [PMID: 38506947 DOI: 10.1007/s10123-024-00513-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/01/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
A novel enrofloxacin-degrading fungus was isolated from a rhizosphere sediment of the submerged macrophyte Vallisneria spiralis L.. The isolate, designated KC0924g, was identified as a member of the genus Humicola based on morphological characteristics and tandem conserved sequence analysis. The optimal temperature and pH for enrofloxacin degradation by strain KC0924g were 28 °C and 9.0, respectively. Under such condition, 98.2% of enrofloxacin with an initial concentration of 1 mg L-1 was degraded after 72 h of incubation, with nine possible degradation products identified. Four different metabolic pathways were proposed, which were initiated by cleavage of the piperazine moiety, hydroxylation of the aromatic ring, oxidative decarboxylation, or defluorination. In addition to enrofloxacin, strain KC0924g also degraded other fluoroquinolone antibiotics (ciprofloxacin, norfloxacin, and ofloxacin), malachite green (an illegal additive in aquaculture), and leucomalachite green. Pretreatment of cells of strain KC0924g with Cu2+ accelerated ENR degradation. Furthermore, it was speculated that a flavin-dependent monooxygenase was involved in ENR degradation, based on the increased transcriptional levels of these two genes after Cu2+ induction. This work enriches strain resources for enrofloxacin remediation and, more importantly, would facilitate studies on the molecular mechanism of ENR degradation with degradation-related transcriptome available.
Collapse
Affiliation(s)
- Xueting Chen
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, No.265 Jiamusi Road, Yangpu District, Shanghai, 200433, China.
| | - Yuping Zhang
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, No.265 Jiamusi Road, Yangpu District, Shanghai, 200433, China
| | - Jinghua Liu
- Shanghai Fisheries Research Institute, Shanghai Fisheries Technical Extension Station, No.265 Jiamusi Road, Yangpu District, Shanghai, 200433, China
| |
Collapse
|
3
|
Chakravorty A, Raghavan V. Proton conductive 2D MXene-derived potassium titanate nanoribbons fabricated electrochemical platform for trace detection of enrofloxacin. CHEMOSPHERE 2024; 366:143520. [PMID: 39393580 DOI: 10.1016/j.chemosphere.2024.143520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
In recent years, due to exceptional properties like broad interlayered spacing and low working potential, MXene-derived titanate nanoribbons have been established as promising electrode materials. Herein, the electrocatalytic activity of MXene-derived potassium titanate nanoribbon was employed to develop a voltammetric sensor for the detection of enrofloxacin. The sensor's significance is to provide a sustainable solution to quantify the presence of enrofloxacin regarding food safety and environmental monitoring. Moreover, to achieve the United Nations' Sustainable Development Goals by preventing antimicrobial resistance to accomplish the One Health approach. Potassium titanate nanoribbons were synthesized using 2D Ti3C2 MXene as an active precursor material, while X-ray diffraction spectroscopy, field emission scanning electron microscopy, high-resolution transmission electron microscopy, selected area electron diffraction pattern, elemental mapping, and energy-dispersive X-ray spectroscopy were used to characterize the crystallinity, surface and layered morphology of synthesized nanoribbons. The Brunauer-Emmett-Teller (BET) technique was applied to calculate the specific surface area of the synthesized materials. The materials underwent electrochemical characterization using cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). Later on, the nanoribbons were fabricated on the surface of a glassy carbon electrode, and the electro-oxidative behaviour of enrofloxacin was studied by CV, DPV, square wave voltammetry (SWV) in 0.1 M phosphate buffer (optimized pH 8). The developed sensor depicts a significantly lower limit of quantification of 0.007 μM (≈2.5 μg/L), and an upper limit of quantification of 18 μM (≈6.5 mg/L) along with a limit of detection (LOD) of 0.00279, 0.00803, 0.00881 μM obtained from CV, DPV, and SWV respectively. Furthermore, the developed electrodes show a reliable selectivity to be examined in real complex matrices, i.e. marine water, river water, agricultural soil, organic fertilizer, milk, honey, and poultry egg.
Collapse
Affiliation(s)
- Arghya Chakravorty
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, India
| | - Vimala Raghavan
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, 632014, India.
| |
Collapse
|
4
|
Zhu L, Meng S, Fang L, Li Z, Yang R, Qiu L, Zhong L, Song C. Intra-species differences shape differences of enrofloxacin residues and its degradation products in tilapia: A precise risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135151. [PMID: 39002484 DOI: 10.1016/j.jhazmat.2024.135151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/13/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024]
Abstract
The increasing use and abuse of antibiotics in agriculture and aquaculture necessitates a more thorough risk assessment. We first advocate a precise assessment that subdivides the assessment scope from interspecies to intraspecific levels. Differences in ENR residues and degradation within the intraspecific category were simultaneously explored. This study chose red and GIFT tilapia, both belonging to the intra-specific category of tilapia, for an enrofloxacin (ENR) exposure experiment. Red tilapia had a lower area under the curve (AUC) representing drug accumulation, indicating a notably shorter withdrawal period (7 days) compared to GIFT tilapia (31.4 days) in the edible parts. While four potential transformation pathways were proposed for ENR in tilapia, red tilapia had fewer detected degradation products (6 items) than GIFT tilapia (10 items), indicating a simpler transformation pathway in red tilapia. Predictive assessments using the Toxtree model revealed that of the four extra degradation products in GIFT tilapia, two may possess carcinogenic and mutagenic properties. Overall, differences were observed in ENR residues and degradation within the intraspecific category, with red tilapia presenting lower risks than GIFT tilapia. This work suggests a new strategy to perfect the methodology for antibiotic risk assessment and facilitate systematic antibiotic administration management in the future.
Collapse
Affiliation(s)
- Lei Zhu
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China
| | - Shunlong Meng
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100141 Beijing, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China
| | - Longxiang Fang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100141 Beijing, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China
| | - Zhonghua Li
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China
| | - Ruonan Yang
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China; School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Liping Qiu
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100141 Beijing, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China
| | - Liqiang Zhong
- Freshwater Fisheries Research Institute of Jiangsu Province, 210017 Nanjing, China.
| | - Chao Song
- Wuxi Fisheries College, Nanjing Agricultural University, 214081 Wuxi, China; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China; Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Environmental Factors (Wuxi), Ministry of Agriculture and Rural Affairs, 214081 Wuxi, China; Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture and Rural Affairs, 100141 Beijing, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, 214081 Wuxi, China.
| |
Collapse
|
5
|
Singh PP, Pandey G, Murti Y, Gairola J, Mahajan S, Kandhari H, Tivari S, Srivastava V. Light-driven photocatalysis as an effective tool for degradation of antibiotics. RSC Adv 2024; 14:20492-20515. [PMID: 38946773 PMCID: PMC11208907 DOI: 10.1039/d4ra03431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 06/22/2024] [Indexed: 07/02/2024] Open
Abstract
Antibiotic contamination has become a severe issue and a dangerous concern to the environment because of large release of antibiotic effluent into terrestrial and aquatic ecosystems. To try and solve these issues, a plethora of research on antibiotic withdrawal has been carried out. Recently photocatalysis has received tremendous attention due to its ability to remove antibiotics from aqueous solutions in a cost-effective and environmentally friendly manner with few drawbacks compared to traditional photocatalysts. Considerable attention has been focused on developing advanced visible light-driven photocatalysts in order to address these problems. This review provides an overview of recent developments in the field of photocatalytic degradation of antibiotics, including the doping of metals and non-metals into ultraviolet light-driven photocatalysts, the formation of new semiconductor photocatalysts, the advancement of heterojunction photocatalysts, and the building of surface plasmon resonance-enhanced photocatalytic systems.
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Prayagraj U.P.-211010 India
| | - Geetika Pandey
- Department of Physics, Faculty of Science, United University Prayagraj-211012 India
| | - Yogesh Murti
- Institute of Pharmaceutical Research, GLA University Mathura-281406 India
| | - Jagriti Gairola
- School of Pharmacy, Graphic Era Hill University Clement Town Dehradun 248002 Uttarakhand India
- Department of Allied Sciences, Graphic Era (Deemed to be University) Clement Town Dehradun 248002 Uttarakhand India
| | - Shriya Mahajan
- Centre of Research Impact and Outcome, Chitkara University Rajpura-140417 Punjab India
| | - Harsimrat Kandhari
- Chitkara Centre for Research and Development, Chitkara University Himachal Pradesh-174103 India
| | - Shraddha Tivari
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U.P.-211002 India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj U.P.-211002 India
| |
Collapse
|
6
|
Hu L, Chen Z, Li T, Ye X, Luo Q, Lai W. Comparison of oriented and non-oriented antibody conjugation with AIE fluorescence microsphere for the immunochromatographic detection of enrofloxacin. Food Chem 2023; 429:136816. [PMID: 37459713 DOI: 10.1016/j.foodchem.2023.136816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 08/24/2023]
Abstract
Antibodies and labels were typically non-oriented conjugated in conventional immunochromatographic assays (ICAs). In this work, a C-terminal cysteine-tagged recombinant protein A (rPA) was conjugated in an oriented manner onto aggregation-induced emission fluorescence microsphere (AIEFM). The Fc fragment of anti-enrofloxacin monoclonal antibody (anti-ENR mAb) was then conjugated onto the rPA. The resulting oriented mAb-AIEFM probe was used in an ENR-ICA for the rapid detection of ENR, a widely abused animal drug. The ENR-ICA with the oriented probe saved 66.7% of anti-ENR mAb and 25% of ENR-bovine serum albumin, and had a limit of detection of 0.035 ng/mL, compared with 0.079 ng/mL for the non-oriented probe. The corresponding linear ranges of the ENR-ICA based on the oriented and non-oriented probes were 0.25-10 ng/mL and 0.1-2.5 ng/mL, respectively. This novel ICA based on the oriented probe has the potential to be used for sensitive and rapid detection in food safety.
Collapse
Affiliation(s)
- Liwen Hu
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Zhenzhen Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China
| | - Ting Li
- Ganjiang Traditional Chinese Medicine Innovation Center, Nanchang 330115, PR China
| | - Xianlong Ye
- Ganjiang Traditional Chinese Medicine Innovation Center, Nanchang 330115, PR China
| | - Qi Luo
- Jiangxi Ceneral Institute of Testing and Certification, Nanchang 330052, PR China
| | - Weihua Lai
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, PR China.
| |
Collapse
|
7
|
Li N, He X, Ye J, Dai H, Peng W, Cheng Z, Yan B, Chen G, Wang S. H 2O 2 activation and contaminants removal in heterogeneous Fenton-like systems. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131926. [PMID: 37379591 DOI: 10.1016/j.jhazmat.2023.131926] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/23/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023]
Abstract
Emerging contaminants can be removed effectively in heterogeneous Fenton-like systems. Currently, catalyst activity and contaminant removal mechanisms have been studied extensively in Fenton-like systems. However, a systematic summary was lacking. This review summarized: 1) The effects of various heterogeneous catalysts on emerging contaminants degradation by activating H2O2; 2) The role of active sites in different catalysts during the activation of H2O2 and their contribution to the generation of active species; 3) The modulation of degradation pathways of emerging contaminants. This paper will help scholars to advance the controlled construction of active sites in heterogeneous Fenton-like systems. Suitable heterogeneous Fenton catalysts can be selected in practical water treatment processes.
Collapse
Affiliation(s)
- Ning Li
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Xu He
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Jingya Ye
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Haoxi Dai
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, State Key Lab of Chemical Engineering, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhanjun Cheng
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University/Tianjin Key Lab of Biomass/Wastes Utilization, Tianjin 300072, China
| | - Guanyi Chen
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|