1
|
Tripathi M, Singh P, Pathak S, Manimekalai R, Garg D, Dashora K. Strategies for the Remediation of Micro- and Nanoplastics from Contaminated Food and Water: Advancements and Challenges. J Xenobiot 2025; 15:30. [PMID: 39997373 PMCID: PMC11856478 DOI: 10.3390/jox15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/30/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025] Open
Abstract
Micro- and nanoplastic (MNP) pollution is a significant concern for ecosystems worldwide. The continuous generation and extensive utilization of synthetic plastics have led to the widespread contamination of water and food resources with MNPs. These pollutants originate from daily-use products and industrial waste. Remediation of such pollutants is essential to protect ecosystems and human health since these ubiquitous contaminants pose serious biological and environmental hazards by contaminating food chains, water sources, and the air. Various remediation techniques, including physical, chemical, sophisticated filtration, microbial bioremediation, and adsorption employing novel materials, provide encouraging avenues for tackling this worldwide issue. The biotechnological approaches stand out as effective, eco-friendly, and sustainable solutions for managing these toxic pollutants. However, the complexity of MNP pollution presents significant challenges in its management and regulation. Addressing these challenges requires cross-disciplinary research efforts to develop and implement more efficient, sustainable, eco-friendly, and scalable techniques for mitigating widespread MNP pollution. This review explores the various sources of micro- and nanoplastic contamination in water and food resources, their toxic impacts, remediation strategies-including advanced biotechnological approaches-and the challenges in treating these pollutants to alleviate their effects on ecosystems and human health.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Pankaj Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | - Sukriti Pathak
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India
| | | | - Diksha Garg
- Department of Microbiology, DAV University, Jalandhar 144012, Punjab, India
| | - Kavya Dashora
- Centre for Rural Development and Technology, Indian Institute of Technology, Hauz Khas, New Delhi 110016, Delhi, India
| |
Collapse
|
2
|
Zhang Y, Cao X, Liu Q, Chen Y, Wang Y, Cong H, Li C, Li Y, Wang Y, Jiang J, Li L. Multi-omics analysis of Streptomyces djakartensis strain MEPS155 reveal a molecular response strategy combating Ceratocystis fimbriata causing sweet potato black rot. Food Microbiol 2024; 122:104557. [PMID: 38839221 DOI: 10.1016/j.fm.2024.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/19/2024] [Accepted: 04/28/2024] [Indexed: 06/07/2024]
Abstract
To investigate the potential antifungal mechanisms of rhizosphere Actinobacteria against Ceratocystis fimbriata in sweet potato, a comprehensive approach combining biochemical analyses and multi-omics techniques was employed in this study. A total of 163 bacterial strains were isolated from the rhizosphere soil of sweet potato. Among them, strain MEPS155, identified as Streptomyces djakartensis, exhibited robust and consistent inhibition of C. fimbriata mycelial growth in in vitro dual culture assays, attributed to both cell-free supernatant and volatile organic compounds. Moreover, strain MEPS155 demonstrated diverse plant growth-promoting attributes, including the production of indole-3-acetic acid, 1-aminocyclopropane-1-carboxylate deaminase, phosphorus solubilization, nitrogen fixation, and enzymatic activities such as cellulase, chitinase, and protease. Notably, strain MEPS155 exhibited efficacy against various sweet potato pathogenic fungi. Following the inoculation of strain MEPS155, a significant reduction (P < 0.05) in malondialdehyde content was observed in sweet potato slices, indicating a potential protective effect. The whole genome of MEPS155 was characterized by a size of 8,030,375 bp, encompassing 7234 coding DNA sequences and 32 secondary metabolite biosynthetic gene clusters. Transcriptomic analysis revealed 1869 differentially expressed genes in the treated group that cultured with C. fimbriata, notably influencing pathways associated with porphyrin metabolism, fatty acid biosynthesis, and biosynthesis of type II polyketide products. These alterations in gene expression are hypothesized to be linked to the production of secondary metabolites contributing to the inhibition of C. fimbriata. Metabolomic analysis identified 1469 potential differently accumulated metabolites (PDAMs) when comparing MEPS155 and the control group. The up-regulated PDAMs were predominantly associated with the biosynthesis of various secondary metabolites, including vanillin, myristic acid, and protocatechuic acid, suggesting potential inhibitory effects on plant pathogenic fungi. Our study underscores the ability of strain S. djakartensis MEPS155 to inhibit C. fimbriata growth through the production of secretory enzymes or secondary metabolites. The findings contribute to a theoretical foundation for future investigations into the role of MEPS155 in postharvest black rot prevention in sweet potato.
Collapse
Affiliation(s)
- Yongjing Zhang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Qiao Liu
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yujie Chen
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yiming Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Hao Cong
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Changgen Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yanting Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Yixuan Wang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China
| | - Jihong Jiang
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| | - Ludan Li
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu Province, 221116, China.
| |
Collapse
|
3
|
Abdelshafy Mohamad OA, Liu YH, Huang Y, Kuchkarova N, Dong L, Jiao JY, Fang BZ, Ma JB, Hatab S, Li WJ. Metabonomic analysis to identify exometabolome changes underlying antifungal and growth promotion mechanisms of endophytic Actinobacterium Streptomyces albidoflavus for sustainable agriculture practice. Front Microbiol 2024; 15:1439798. [PMID: 39282566 PMCID: PMC11393692 DOI: 10.3389/fmicb.2024.1439798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/14/2024] [Indexed: 09/19/2024] Open
Abstract
In recent years, there has been an increasing focus on microbial ecology and its possible impact on agricultural production, owing to its eco-friendly nature and sustainable use. The current study employs metabolomics technologies and bioinformatics approaches to identify changes in the exometabolome of Streptomyces albidoflavus B24. This research aims to shed light on the mechanisms and metabolites responsible for the antifungal and growth promotion strategies, with potential applications in sustainable agriculture. Metabolomic analysis was conducted using Q Exactive UPLC-MS/MS. Our findings indicate that a total of 3,840 metabolites were identified, with 137 metabolites exhibiting significant differences divided into 61 up and 75 downregulated metabolites based on VIP >1, |FC| >1, and p < 0.01. The interaction of S. albidoflavus B24 monoculture with the co-culture demonstrated a stronger correlation coefficient. The Principal Component Analysis (PCA) demonstrates that PCA1 accounted for 23.36%, while PCA2 accounted for 20.28% distinction. OPLS-DA score plots indicate significant separation among different groups representing (t1) 24% as the predicted component (to1) depicts 14% as the orthogonal component. According to the findings of this comprehensive study, crude extracts from S. albidoflavus demonstrated varying abilities to impede phytopathogen growth and enhance root and shoot length in tested plants. Through untargeted metabolomics, we discovered numerous potential molecules with antagonistic activity against fungal phytopathogens among the top 10 significant metabolites with the highest absolute log2FC values. These include Tetrangulol, 4-Hydroxybenzaldehyde, and Cyclohexane. Additionally, we identified plant growth-regulating metabolites such as N-Succinyl-L-glutamate, Nicotinic acid, L-Aspartate, and Indole-3-acetamide. The KEGG pathway analysis has highlighted these compounds as potential sources of antimicrobial properties. The inhibitory effect of S. albidoflavus crude extracts on pathogen growth is primarily attributed to the presence of specific gene clusters responsible for producing cyclic peptides such as ansamycins, porphyrin, alkaloid derivatives, and neomycin. Overall, it is apparent that crude extracts from S. albidoflavus exhibited varying abilities to inhibit the growth of three phytopathogens and enhancement in both root and shoot length of tested plants. This research enhances our understanding of how secondary metabolites contribute to growth promotion and biocontrol, supporting ecosystem sustainability and resilience while boosting productivity in sustainable agriculture.
Collapse
Affiliation(s)
- Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- Department of Biological, Marine Sciences and Environmental Agriculture, Institute for Post Graduate Environmental Studies, Arish University, Arish, Egypt
- Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
- Faculty of Organic Agriculture, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Nigora Kuchkarova
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Lei Dong
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Jin-Biao Ma
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
| | - Shaimaa Hatab
- Faculty of Organic Agriculture, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Song L, Wang F, Liu C, Guan Z, Wang M, Zhong R, Xi H, Zhao Y, Wen C. Isolation and Evaluation of Streptomyces melanogenes YBS22 with Potential Application for Biocontrol of Rice Blast Disease. Microorganisms 2023; 11:2988. [PMID: 38138134 PMCID: PMC10745888 DOI: 10.3390/microorganisms11122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Plant diseases caused by pathogenic fungi pose a significant threat to agricultural production. This study reports on a strain YBS22 with broad-spectrum antifungal activity that was isolated and identified, and its active metabolites were purified and systematically studied. Based on a whole genome sequence analysis, the new strain YBS22 was identified as Streptomyces melanogenes. Furthermore, eight gene clusters were predicted in YBS22 that are responsible for the synthesis of bioactive secondary metabolites. These clusters have homologous sequences in the MIBiG database with a similarity of 100%. The antifungal effects of YBS22 and its crude extract were evaluated in vivo and vitro. Our findings revealed that treatment with the strain YBS22 and its crude extract significantly reduced the size of necrotic lesions caused by Magnaporthe oryzae on rice leaves. Further analysis led to the isolation and purification of an active compound from the crude extract of the strain YBS22, identified as N-formylantimycin acid methyl ester, an analog of antimycin, characterized by NMR and MS analyses. Consistently, the active compound can significantly inhibit the germination and development of M. oryzae spores in a manner that is both dose- and time-dependent. As a result, we propose that the strain YBS22 could serve as a novel source for the development of biological agents aimed at controlling rice blast disease.
Collapse
Affiliation(s)
- Luyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Fei Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China;
| | - Chuang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Zhengzhe Guan
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Mengjiao Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Rongrong Zhong
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Huijun Xi
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Ying Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China; (L.S.); (C.L.); (Z.G.); (M.W.); (R.Z.); (H.X.)
| |
Collapse
|
5
|
Pandey P, Tripathi A, Dwivedi S, Lal K, Jhang T. Deciphering the mechanisms, hormonal signaling, and potential applications of endophytic microbes to mediate stress tolerance in medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1250020. [PMID: 38034581 PMCID: PMC10684941 DOI: 10.3389/fpls.2023.1250020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The global healthcare market in the post-pandemic era emphasizes a constant pursuit of therapeutic, adaptogenic, and immune booster drugs. Medicinal plants are the only natural resource to meet this by supplying an array of bioactive secondary metabolites in an economic, greener and sustainable manner. Driven by the thrust in demand for natural immunity imparting nutraceutical and life-saving plant-derived drugs, the acreage for commercial cultivation of medicinal plants has dramatically increased in recent years. Limited resources of land and water, low productivity, poor soil fertility coupled with climate change, and biotic (bacteria, fungi, insects, viruses, nematodes) and abiotic (temperature, drought, salinity, waterlogging, and metal toxicity) stress necessitate medicinal plant productivity enhancement through sustainable strategies. Plants evolved intricate physiological (membrane integrity, organelle structural changes, osmotic adjustments, cell and tissue survival, reclamation, increased root-shoot ratio, antibiosis, hypersensitivity, etc.), biochemical (phytohormones synthesis, proline, protein levels, antioxidant enzymes accumulation, ion exclusion, generation of heat-shock proteins, synthesis of allelochemicals. etc.), and cellular (sensing of stress signals, signaling pathways, modulating expression of stress-responsive genes and proteins, etc.) mechanisms to combat stresses. Endophytes, colonizing in different plant tissues, synthesize novel bioactive compounds that medicinal plants can harness to mitigate environmental cues, thus making the agroecosystems self-sufficient toward green and sustainable approaches. Medicinal plants with a host set of metabolites and endophytes with another set of secondary metabolites interact in a highly complex manner involving adaptive mechanisms, including appropriate cellular responses triggered by stimuli received from the sensors situated on the cytoplasm and transmitting signals to the transcriptional machinery in the nucleus to withstand a stressful environment effectively. Signaling pathways serve as a crucial nexus for sensing stress and establishing plants' proper molecular and cellular responses. However, the underlying mechanisms and critical signaling pathways triggered by endophytic microbes are meager. This review comprehends the diversity of endophytes in medicinal plants and endophyte-mediated plant-microbe interactions for biotic and abiotic stress tolerance in medicinal plants by understanding complex adaptive physiological mechanisms and signaling cascades involving defined molecular and cellular responses. Leveraging this knowledge, researchers can design specific microbial formulations that optimize plant health, increase nutrient uptake, boost crop yields, and support a resilient, sustainable agricultural system.
Collapse
Affiliation(s)
- Praveen Pandey
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Arpita Tripathi
- Microbial Technology Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Faculty of Education, Teerthanker Mahaveer University, Moradabad, India
| | - Shweta Dwivedi
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kanhaiya Lal
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Tripta Jhang
- Division of Plant Breeding and Genetic Resource Conservation, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| |
Collapse
|
6
|
Yuan Y, Shi Y, Liu Z, Fan Y, Liu M, Ningjing M, Li Y. Promotional Properties of ACC Deaminase-Producing Bacterial Strain DY1-3 and Its Enhancement of Maize Resistance to Salt and Drought Stresses. Microorganisms 2023; 11:2654. [PMID: 38004666 PMCID: PMC10673606 DOI: 10.3390/microorganisms11112654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Salt stress and drought stress can decrease the growth and productivity of agricultural crops. Plant growth-promoting bacteria (PGPB) may protect and promote plant growth at abiotic stress. The aim of this study was to search for bacterial strains that can help crops resist rises in drought and salt stresses, to improve crop seed resistance under drought and salt stresses, and to investigate the effect of bacterial strains that can help crop resist external stresses under different stress conditions. Pseudomonas DY1-3, a strain from the soil under the glacier moss community of Tien Shan No. 1, was selected to investigate its growth-promoting effects. Previous studies have shown that this strain is capable of producing ACC (1-aminocyclopropane-1-carboxylic acid) deaminase. In this experiment, multifunctional biochemical test assays were evaluated to determine their potential as PGPB and their bacterial growth-promoting properties and stress-resistant effects on maize plants were verified through seed germination experiments and pot experiments. The results showed that strain DY1-3 has good salt and drought tolerance, as well as the ability to melt phosphorus, fix nitrogen, and produce iron carriers, IAA, EPS, and other pro-biomasses. This study on the growth-promoting effects of the DY1-3 bacterial strain on maize seeds revealed that the germination rate, primary root length, germ length, number of root meristems, and vigor index of the maize seeds were increased after soaking them in bacterial solution under no-stress, drought-stress, and salt-stress environments. In the potting experiments, seedlings in the experimental group inoculated with DY1-3 showed increased stem thicknesses, primary root length, numbers of root meristems, and plant height compared to control seedlings using sterile water. In the study on the physiological properties of the plants related to resistance to stress, the SOD, POD, CAT, and chlorophyll contents of the seedlings in the experimental group, to which the DY1-3 strain was applied, were higher than those of the control group of seedlings to which the bacterial solution was not applied. The addition of the bacterial solution reduced the content of MDA in the experimental group seedlings, which indicated that DY1-3 could positively affect the promotion of maize seedlings and seeds against abiotic stress. In this study, it was concluded that strain DY1-3 is a valuable strain for application, which can produce a variety of pro-biotic substances to promote plant growth in stress-free environments or to help plants resist abiotic stresses. In addition to this, the strain itself has good salt and drought tolerance, making it an option to help crops grown in saline soils to withstand abiotic stresses, and a promising candidate for future application in agricultural biofertilizers.
Collapse
Affiliation(s)
| | | | | | - Yonghong Fan
- National Demonstration Center for Experimental Biology Education, Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830017, China (Z.L.)
| | | | | | | |
Collapse
|
7
|
Wang Y, Zhang Y, Cong H, Li C, Wu J, Li L, Jiang J, Cao X. Cultivable Endophyte Resources in Medicinal Plants and Effects on Hosts. Life (Basel) 2023; 13:1695. [PMID: 37629552 PMCID: PMC10455732 DOI: 10.3390/life13081695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/29/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
With the increasing demand for medicinal plants and the increasing shortage of resources, improving the quality and yield of medicinal plants and making more effective use of medicinal plants has become an urgent problem to be solved. During the growth of medicinal plants, various adversities can lead to nutrient loss and yield decline. Using traditional chemical pesticides to control the stress resistance of plants will cause serious pollution to the environment and even endanger human health. Therefore, it is necessary to find suitable pesticide substitutes from natural ingredients. As an important part of the microecology of medicinal plants, endophytes can promote the growth of medicinal plants, improve the stress tolerance of hosts, and promote the accumulation of active components of hosts. Endophytes have a more positive and direct impact on the host and can metabolize rich medicinal ingredients, so researchers pay attention to them. This paper reviews the research in the past five years, aiming to provide ideas for improving the quality of medicinal plants, developing more microbial resources, exploring more medicinal natural products, and providing help for the development of research on medicinal plants and endophytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xiaoying Cao
- The Key Laboratory of Biotechnology for Medicinal and Edible Plant Resources of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, Xuzhou 221116, China; (Y.W.); (Y.Z.); (H.C.); (C.L.); (J.W.); (L.L.); (J.J.)
| |
Collapse
|