1
|
Zhang Z, Fang J, Jin H, Zhang L, Fang S. Application of oxide nanoparticles mitigates the salt-induced effects on photosynthesis and reduces salt injury in Cyclocarya paliurus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176333. [PMID: 39304156 DOI: 10.1016/j.scitotenv.2024.176333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Salinization is very detrimental to photosynthetic processes and plant growth, while nanoparticles (NPs) are considered to be the emerging materials to improve plant adaptability to salt stress. Cyclocarya paliurus is being planted on saline-alkali soils to meet the growing demand for its leaves and medicinal products. However, this species exhibits low salt tolerance and little information is available on whether NPs application would mitigate the salt-induced effects. This study explored the influence of three oxide NPs and their application doses on improving salt tolerance in C. paliurus under simulated natural conditions. The results showed that these oxide NPs could modify the salt tolerance in C. paliurus seedlings, but the alleviating effects varied in the NPs types and their application doses. Under the salt stress, foliar applications of SiO2-NPs with 500 mg L-1 and MnO2-NPs with 50 mg L-1 significantly increased net photosynthetic rate and seedling height by 52.0-59.5 %, and reduced the salt injury index by 67.6-70.7 %. Transcriptomic analysis revealed that the genes related to photosynthesis pathway were well responsive to both salt stress and NPs application, while the applications of high-dose SiO2- and MnO2-NPs up-regulated the expression of 50 photosynthesis-related genes. Weighted gene co-expression network analysis (WGCNA) indicated there existed a close relationship between physiological parameters and gene expression patterns, and the nine key genes in mitigating salt stress in C. paliurus were identified after the NPs application. Our findings suggested that the effects of NPs on mitigating salt-induced damages depending on the NP type and applied dose. The applications of SiO2-NPs and MnO2-NPs with an appropriate dose hold great promise for mitigating the salt-induced photosynthetic dysfunction via regulation of related key genes, and ultimately promoting plant growth and ameliorating the salt-tolerance.
Collapse
Affiliation(s)
- Zijie Zhang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Fang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Huiyin Jin
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Zhang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shengzuo Fang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Mosaedi H, Mozafari H, Sani B, Ghasemi Pirbalouti A, Rajabzadeh F. Foliar-applied silicon and zinc nanoparticles improve plant growth, biochemical attributes, and essential oil profile of fennel ( Foeniculum vulgare) under different irrigation regimes. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24149. [PMID: 39361806 DOI: 10.1071/fp24149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
The comparative efficacy of silicon (Si) and zinc (Zn) nanoparticles (NPs) in mitigating drought stress in fennel (Foeniculum vulgare ) remains largely unexplored. This study evaluated the impact of Si NPs and Zn NPs on enhancing plant growth and physiological-biochemical attributes of fennel under varying irrigation regimes. The 2-year study was a split-pot design with irrigation at three irrigation levels (100, 75, and 50% field capacity, FC) and five treatments of foliar application of Si and Zn NPs (control, 1mM Si NP, 2mM Si NP, 1mM Zn NP, 2mM Zn NP). Results showed that drought stress reduced plant performance. Increases in superoxide dismutase (SOD, 131%) and catalase (CAT, 276%) were seen after a 50% FC drought without the use of Si and Zn NPs. Conversely, biological yield (34%), seed yield (44%), chlorophyll a +b (26%), relative water content (RWC, 21%), and essential oil (EO) yield (50%) were all reduced. However, application of Zn and Si, particularly 1mM Si and 2mM Zn, greatly mitigated drought stress via lowering CAT and SOD activity and enhancing plant yield, chlorophyll content, RWC, and EO. The composition of the EO consisted primarily of anethole, followed by limonene, fenchone, and estragole. During drought conditions, monoterpene hydrocarbons increased while oxygenated monoterpenes decreased. The opposite trend was observed for Si and Zn NPs. Our results suggest that applying Zn NPs at 2mM followed by Si NPs at 1mM improved plant resilience and EO yield in fennel plants under water stress.
Collapse
Affiliation(s)
- Hossein Mosaedi
- Department of Agronomy, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Mozafari
- Department of Agronomy, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Behzad Sani
- Department of Agronomy, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | | | - Faezeh Rajabzadeh
- Department of Agronomy, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Nafchi MA, Kachoie MA, Ghodrati L. Co-application of titanium dioxide and hydroxyapatite nanoparticles modulated chromium and salinity stress via modifying physio-biochemical attributes in Solidago canadensis L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50464-50477. [PMID: 39093394 DOI: 10.1007/s11356-024-34454-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/18/2024] [Indexed: 08/04/2024]
Abstract
Climate change and human activity have led to an increase in salinity levels and the toxicity of chromium (Cr). One promising approach to modifying these stressors in plants is to use effective nanoparticles (NPs). While titanium dioxide nanoparticles (TiO2 NPs) and hydroxyapatite (HAP NPs) have been demonstrated to increase plant tolerance to abiotic stress by enhancing antioxidant capacity, lipid peroxidation, and secondary metabolites, it is unknown how these two compounds can work together in situations when salt and Cr toxicity are present. The objective of the current study was to determine the effects of foliar-applied TiO2 NPs (15 mg L-1) and HAP NPs (250 mg L-1) separately and in combination on growth, chlorophyll (Chl), water content, lipid peroxidation, antioxidant capacity, phenolic content, and essential oils (EOs) of Solidago canadensis L. under salinity (100 mM NaCl) and Cr toxicity (100 mg kg-1 soil). Salinity was more deleterious than Cr by decreasing plant weight, Chl a + b, relative water content (RWC), EO yield, and increasing malondialdehyde (MDA), electrolyte leakage (EL), superoxide dismutase (SOD) activity, and catalase (CAT) activity. The co-application of TiO2 and HAP NPs proved to be more successful. This was evidenced by the increased shoot weight (36%), root weight (29%), Chl a + b (23%), RWC (15%), total phenolic content (TPC, 34%), total flavonoid content (TFC, 28%), and EO yield (56%), but decreased MDA (21%), EL (11%), SOD (22%) and CAT activity (38%) in salt-exposed plants. The study demonstrated the effective strategy of co-applying these NPs to modify abiotic stress by enhancing phenolic compounds and EO yield as key results.
Collapse
Affiliation(s)
| | - Mehrdad Ataie Kachoie
- Medicinal Plants Research and Processing Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Leila Ghodrati
- Medicinal Plants Research and Processing Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
4
|
Tajik Khademi H, Khodadadi M, Hassanpanah D, Hajainfar R. Changes in fruit yield, biochemical attributes, and leaf minerals of different cucumber (Cucumis sativus L.) cultivars under foliar application of silicon nanoparticles. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:42012-42022. [PMID: 38853231 DOI: 10.1007/s11356-024-33890-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/10/2023] [Indexed: 06/11/2024]
Abstract
Silicon nanoparticles (Si NPs) have an eminent role in improving plant yield through improving yield. The present study was conducted to find the effect of Si NPs on plant yield, biochemical attributes, and minerals of different cucumber cultivars. The greenhouse experiment with foliar application of Si NPs (100, 200, and 300 mg L-1) was carried out on cucumber cultivars (Emilie, Mirsoltan, Mitio, and Viola). The application of Si NPs at 300 mg L-1 led to the highest fruit yield, with a 17% increase in fruit production compared to the control. Fruit firmness differed by 31% between Emilie and Si NPs at 100 mg L-1 and Mito at 300 mg L-1. Plants experiencing Si NPs at 300 mg L-1 had the greatest chlorophyll (Chl) a+b. Compared to the other cultivars, Mito had a greater fruit yield and Chl content. The Si NPs increased TSS by 11% while lowering TA by 24% when compared to the control at 300 mg L-1. Foliar application of Si NPs reduced the value of TSS/TA. The largest value of K was reached in the Mito cultivar with Si NPs at 200 mg L-1, with a 22% increase in comparison to the control, indicating that Si NPs considerably boosted the K content. The Si NPs at 200 mg L-1 significantly increased leaf N and P in the Mito cultivar by 16 and 50%, respectively. By using agglomerative hierarchy clustering (AHC), Emilie and Mito were located in two separate clusters, whilst Viola and Mirsoltan were grouped in one cluster. In conclusion, Si NPs at 200-300 mg L-1 enhanced fruit yield, and Mito showed the highest yield when compared to other cultivars.
Collapse
Affiliation(s)
- Hossein Tajik Khademi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Khodadadi
- Vegetable Research Center, Horticulture Sciences Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran.
| | - Davoud Hassanpanah
- Horticulture Crops Research Department, Ardabil Agricultural and Natural Resources, Agricultural Research, Education & Extension Organization (AREEO), Ardabil, Iran
| | - Ramin Hajainfar
- Vegetable Research Center, Horticulture Sciences Research Institute, Agricultural Research, Education, and Extension Organization, Karaj, Iran
| |
Collapse
|
5
|
Farnoosh S, Masoudian N, Safipour Afshar A, Nematpour FS, Roudi B. Foliar-applied iron and zinc nanoparticles improved plant growth, phenolic compounds, essential oil yield, and rosmarinic acid production of lemon balm (Melissa officinalis L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36882-36893. [PMID: 38758440 DOI: 10.1007/s11356-024-33680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/10/2024] [Indexed: 05/18/2024]
Abstract
Metallic nanoparticles (NPs) have been highlighted to improve plant growth and development in the recent years. Although positive effects of some NPs have been reported on medicinal plants, the knowledge for stimulations application of iron (Fe) and zinc (Zn) NPs is not available. Hence, the present work aimed to discover the effects of Fe NPs at 10, 20, and 30 mg L-1 and Zn NPs at 60 and 120 mg L-1 on growth, water content, photosynthesis pigments, phenolic content, essential oil (EO) quality, and rosmarinic acid (RA) production of lemon balm (Melissa officinalis L.). The results showed that Fe NPs at 20 and 30 mg L-1 and Zn NPs at 120 mg L-1 significantly improved biochemical attributes. Compared with control plants, the interaction of Fe NPs at 30 mg-1 and Zn NPs at 120 mg L-1 led to noticeable increases in shoot weight (72%), root weight (92%), chlorophyll (Chl) a (74%), Chl b (47%), RA (66%), proline (81%), glycine betaine (GB, 231%), protein (286%), relative water content (8%), EO yield (217%), total phenolic content (63%), and total flavonoid content (57%). Heat map analysis revealed that protein, GB, EO yield, shoot weight, root weight, and proline had the maximum changes upon Fe NPs. Totally, the present study recommended the stimulations application of Fe NPs at 20-30 mg L-1 and Zn NPs at 120 mg L-1 to reach the optimum growth and secondary metabolites of lemon balm.
Collapse
Affiliation(s)
- Samaneh Farnoosh
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Nahid Masoudian
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | | | | | - Bostan Roudi
- Department of Biology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
6
|
Amirfakhrian Z, Abdossi V, Mohammadi Torkashvand A, Weisany W, Ghanbari Jahromi M. Co-applied magnesium nanoparticles and biochar modulate salinity stress via regulating yield, biochemical attribute, and fatty acid profile of Physalis alkekengi L. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31806-31817. [PMID: 38637482 DOI: 10.1007/s11356-024-33329-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
While previous studies have addressed the desirable effects of biochar (BC) or magnesium nanoparticles (Mg NPs) on salinity stress individually, there is a research gap regarding their simultaneous application. Additionally, the specific mechanisms underlying the effects of BC and Mg NPs on salinity in Physalis alkekengi L. remain unclear. This study aimed to investigate the synergistic effects of BC and Mg NPs on P. alkekengi L. under salinity stress conditions. A pot experiment was conducted with salinity at 100 and 200 mM sodium chloride (NaCl), as well as soil applied BC (4% v/v) and foliar applied Mg NPs (500 mg L-1) on physiological and biochemical properties of P. alkekengi L. The results represented that salinity, particularly 200 mM NaCl, significantly reduced plant yield (58%) and total chlorophyll (Chl, 36%), but increased superoxide dismutase (SOD, 82%) and catalase (CAT, 159%) activity relative to non-saline conditions. However, the co-application of BC and Mg NPs mitigated these negative effects and improved fruit yield, Chl, anthocyanin, and ascorbic acid. It also decreased the activity of antioxidant enzymes. Salinity also altered the fatty acid composition, increasing saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs), while decreasing monounsaturated fatty acids (MUFAs). The heat map analysis showed that fruit yield, anthocyanin, Chl, and CAT were sensitive to salinity. The findings can provide insights into the possibility of these amendments as sustainable strategies to mitigate salt stress and enhance plant productivity in affected areas.
Collapse
Affiliation(s)
- Zahra Amirfakhrian
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Vahid Abdossi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | | | - Weria Weisany
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Marzieh Ghanbari Jahromi
- Department of Horticultural Science and Agronomy, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
7
|
Saleem S, Alghamdi KM, Mushtaq NU, Tahir I, Bahieldin A, Henrissat B, Alghamdi MK, Rehman RU, Hakeem KR. Computational and experimental analysis of foxtail millet under salt stress and selenium supplementation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:112695-112709. [PMID: 37837596 DOI: 10.1007/s11356-023-30364-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 10/05/2023] [Indexed: 10/16/2023]
Abstract
Salinity stress is a major threat to crop growth and productivity. Millets are stress-tolerant crops that can withstand the environmental constraints. Foxtail millet is widely recognized as a drought and salinity-tolerant crop owing to its efficient ROS scavenging mechanism. Ascorbate peroxidase (APX) is one of the reactive oxygen species (ROS) scavenging enzymes that leads to hydrogen peroxide (H2O2) detoxification and stabilization of the internal biochemical state of the cell under stress. This inherent capacity of the APX enzyme can further be enhanced by the application of an external mitigant. This study focuses on the impact of salt (NaCl) and selenium (Se) application on the APX enzyme activity of foxtail millet using in silico and in-vitro techniques and mRNA expression studies. The NaCl was applied in the concentrations, i.e., 150 mM and 200 mM, while the Se was applied in 1 μM, 5 μM, and 10 μM concentrations. The in silico studies involved three-dimensional structure modeling and molecular docking. The in vitro studies comprised the morphological and biochemical parameters, alongside mRNA expression studies in foxtail millet under NaCl stress and Se applications. The in silico studies revealed that the APX enzyme showed better interaction with Se as compared to NaCl, thus suggesting the enzyme-modulating role of Se. The morphological and biochemical analysis indicated that Se alleviated the NaCl (150 mM and 200 mM) and induced symptoms at 1 µM as compared to 5 and 10 µM by enhancing the morphological parameters, upregulating the gene expression and enzyme activity of APX, and ultimately reducing the H2O2 content significantly. The transcriptomic studies confirmed the upregulation of chloroplastic APX in response to salt stress and selenium supplementation. Hence, it can be concluded that Se as a mitigant at lower concentrations can alleviate NaCl stress in foxtail millet.
Collapse
Affiliation(s)
- Seerat Saleem
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Khalid M Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Naveed Ul Mushtaq
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Inayatullah Tahir
- Department of Botany, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Ahmad Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | | | - Mohammad K Alghamdi
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Reiaz Ul Rehman
- Department of Bioresources, School of Biological Sciences, University of Kashmir, Srinagar, 190006, India
| | - Khalid Rehman Hakeem
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
- Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, 21589, Jeddah, Saudi Arabia.
- Department of Public Health, Daffodil International University, Dhaka, 1341, Bangladesh.
| |
Collapse
|