1
|
Genitsaris S, Stefanidou N, Kourkoutmani P, Michaloudi E, Gros M, García-Gómez E, Petrović M, Ntziachristos L, Moustaka-Gouni M. Do coastal bacterioplankton communities hold the molecular key to the rapid biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) from shipping scrubber effluent? ENVIRONMENTAL RESEARCH 2025; 277:121563. [PMID: 40203979 DOI: 10.1016/j.envres.2025.121563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/01/2025] [Accepted: 04/06/2025] [Indexed: 04/11/2025]
Abstract
Shipping scrubber effluents, containing a cocktail of Polycyclic Aromatic Hydrocarbons (PAHs), show undisputed effects at single-species experiments while PAHs fate in the marine environment after effluent discharge is still investigated. Bacterioplankton, composed of abundant diverse taxa with xenobiotic-degrading capabilities, are the first responders to scrubber emissions and can affect PAHs impacts on marine life. This work aims to examine the fate of scrubber effluent PAHs and alkyl-PAHs in mesocosms of coastal bacterioplankton communities from a pristine (phytoplankton carbon biomass was 8.16 μg C L-1) and a eutrophic (105.35 μg C L-1) coastal site. High-throughput 16S rRNA metabarcoding revealed differential responses of the bacterioplankton linked to their initial community structure and population abundances. Taxa known for their PAHs-degrading capacity were retrieved, including the genera Roseobacter, Porticoccus, Marinomonas, Arcobacter, Lentibacter, Lacinutrix, Pseudospirillum, Glaciecola, Vibrio, Marivita, and Mycobacterium, and were found to have increased roles in shifted communities by increasing their relative abundances at least 5-fold in treatments with high scrubber effluent additions. Additionally, metagenomic analysis of shotgun sequencing, indicated an increase on the number of Clusters of Orthologous Genes (COGs) associated with pathways involved in PAHs degradation. Up to 198 more COGs involved in signal transduction were retrieved in scrubber effluent enriched mesocosms compared to controls, while 15, 86, and 136 more COGs associated with naphthalene, aromatic compound, and benzoate degradation, respectively, were detected in the pristine mesocosms after effluent additions. In both experiments, bacterioplankton responses towards xenobiotic degradation under increased PAHs and alkyl-PAHs were coupled with a drop in their concentrations, below the limit of detection by Day 3 of the experiment in the eutrophic community, and by half in Day 6 in the pristine environment's community. Our findings indicate that PAHs and alkyl-PAHs impacts can be rapidly reduced in natural systems of high bacterial activity.
Collapse
Affiliation(s)
- Savvas Genitsaris
- Section of Ecology and Taxonomy, School of Biology, National and Kapodistrian University of Athens, Zografou Campus, 15784, Athens, Greece.
| | - Natassa Stefanidou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Polyxeni Kourkoutmani
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece; Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Evangelia Michaloudi
- Department of Zoology, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), Girona, Spain; University of Girona (UdG), Girona, Spain
| | - Elisa García-Gómez
- Catalan Institute for Water Research (ICRA), Girona, Spain; University of Girona (UdG), Girona, Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Leonidas Ntziachristos
- Department of Mechanical Engineering, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Maria Moustaka-Gouni
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| |
Collapse
|
2
|
Hayasaka M, Hamajima L, Yoshida Y, Mori R, Kato H, Suzuki H, Tsurigami R, Kojima T, Kato M, Shimizu M. Phenanthrene degradation by a flavoprotein monooxygenase from Phanerodontia chrysosporium. Appl Environ Microbiol 2025; 91:e0157424. [PMID: 39898659 PMCID: PMC11921375 DOI: 10.1128/aem.01574-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 01/12/2025] [Indexed: 02/04/2025] Open
Abstract
Phenanthrene (PHEN), a polycyclic aromatic hydrocarbon (PAH), is degraded by white-rot fungi like Phanerochaete chrysosporium (the fungus has been renamed as Phanerodontia chrysosporium). PHEN is metabolized by P. chrysosporium and transformed into various monohydroxylated and dihydroxylated products. These intermediates are further degraded by cleavage of the aromatic ring. However, the enzymes involved in PHEN conversion in P. chrysosporium remain largely unidentified. We aimed to identify and characterize the P. chrysosporium enzymes involved in the degradation of PHEN and its intermediates. Recombinant P. chrysosporium flavoprotein monooxygenase 11 (FPMO11), a homolog of the salicylate 1-monooxygenase from the naphthalene-degrading bacterium Pseudomonas putida G7, was overexpressed in Escherichia coli. FPMO11 catalyzes the oxidative decarboxylation of 1-hydroxy-2-naphthoate (1H2N) and 2-hydroxy-1-naphthoate (2H1N) to 1,2-dihydroxynaphthalene (1,2DHN). To the best of our knowledge, this is the first study to identify and characterize enzymes with 1H2N and 2H1N monooxygenase activities in members of the FPMO superfamily. Additionally, our search for a dioxygenase with the ability to catalyze the aromatic ring cleavage of 1,2DHN led to the identification of intradiol dioxygenase (IDD) 1 and IDD2 from P. chrysosporium, which catalyzes the ring cleavage of 1,2DHN. Thus, this study also identified, for the first time, intradiol 1,2DHN dioxygenase activity in members of the IDD superfamily. The findings highlight the unique substrate spectra of FPMO11 and IDDs, rendering them attractive candidates for biotechnological applications, especially mitigation of environmental and health risks associated with PAH pollution.IMPORTANCEPhenanthrene (PHEN), a polycyclic aromatic hydrocarbon (PAH), is a widely studied pollutant in environmental science and toxicology due to its presence in fossil fuels, tobacco smoke, and as a byproduct of incomplete combustion processes. White-rot fungi like P. chrysosporium can degrade PHEN through the production of extracellular oxidative enzymes. We investigated the properties of PHEN-degrading enzymes in P. chrysosporium, specifically one flavoprotein monooxygenase (FPMO11) and two intradiol dioxygenases (IDD1 and IDD2). Our findings indicate that the enzymes catalyze the aromatic ring cleavage of PHEN, using the intermediates as substrates, transforming them into less harmful and more biodegradable compounds. This could help reduce environmental pollution and mitigate health risks associated with PAH exposure. The potential of these enzymes for biotechnological applications is also highlighted, emphasizing their critical role in understanding PAH degradation by white-rot fungi.
Collapse
Affiliation(s)
- Mika Hayasaka
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Link Hamajima
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Yuki Yoshida
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Reini Mori
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | - Hiroyuki Kato
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | | | | | | | - Masashi Kato
- Faculty of Agriculture, Meijo University, Nagoya, Japan
| | | |
Collapse
|
3
|
Muhie S, Gautam A, Mylroie J, Sowe B, Campbell R, Perkins EJ, Hammamieh R, Garcia-Reyero N. Effects of Environmental Chemical Pollutants on Microbiome Diversity: Insights from Shotgun Metagenomics. TOXICS 2025; 13:142. [PMID: 39997957 PMCID: PMC11861561 DOI: 10.3390/toxics13020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Chemical exposure in the environment can adversely affect the biodiversity of living organisms, particularly when persistent chemicals accumulate over time and disrupt the balance of microbial populations. In this study, we examined how chemical contaminants influence microorganisms in sediment and overlaying water samples collected from the Kinnickinnic, Milwaukee, and Menomonee Rivers near Milwaukee, Wisconsin, USA. We characterized these samples using shotgun metagenomic sequencing to assess microbiome diversity and employed chemical analyses to quantify more than 200 compounds spanning 16 broad classes, including pesticides, industrial products, personal care products, and pharmaceuticals. Integrative and differential comparative analyses of the combined datasets revealed that microbial density, approximated by adjusted total sequence reads, declined with increasing total chemical concentrations. Protozoan, metazoan, and fungal populations were negatively correlated with higher chemical concentrations, whereas certain bacterial (particularly Proteobacteria) and archaeal populations showed positive correlations. As expected, sediment samples exhibited higher concentrations and a wider dynamic range of chemicals compared to water samples. Varying levels of chemical contamination appeared to shape the distribution of microbial taxa, with some bacterial, metazoan, and protozoan populations present only at certain sites or in specific sample types (sediment versus water). These findings suggest that microbial diversity may be linked to both the type and concentration of chemicals present. Additionally, this study demonstrates the potential roles of multiple microbial kingdoms in degrading environmental pollutants, emphasizing the metabolic versatility of bacteria and archaea in processing complex contaminants such as polyaromatic hydrocarbons and bisphenols. Through functional and resistance gene profiling, we observed that multi-kingdom microbial consortia-including bacteria, fungi, and protozoa-can contribute to bioremediation strategies and help restore ecological balance in contaminated ecosystems. This approach may also serve as a valuable proxy for assessing the types and levels of chemical pollutants, as well as their effects on biodiversity.
Collapse
Affiliation(s)
- Seid Muhie
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.M.); (A.G.); (B.S.); (R.C.)
- The Geneva Foundation, Silver Spring, MD 20910, USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.M.); (A.G.); (B.S.); (R.C.)
| | - John Mylroie
- U.S. Army Engineer Research and Development Center Environmental Laboratory, Vicksburg, MS 39180, USA; (J.M.); (E.J.P.)
| | - Bintu Sowe
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.M.); (A.G.); (B.S.); (R.C.)
- The Geneva Foundation, Silver Spring, MD 20910, USA
| | - Ross Campbell
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.M.); (A.G.); (B.S.); (R.C.)
- The Geneva Foundation, Silver Spring, MD 20910, USA
| | - Edward J. Perkins
- U.S. Army Engineer Research and Development Center Environmental Laboratory, Vicksburg, MS 39180, USA; (J.M.); (E.J.P.)
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (S.M.); (A.G.); (B.S.); (R.C.)
| | - Natàlia Garcia-Reyero
- Institute for Genomics, Biocomputing & Biotechnology, Mississippi State University, Starkville, MS 39759, USA
| |
Collapse
|
4
|
Yesankar PJ, Qureshi A. Insights into the functionality of biofilm-forming bacterial consortia as bioavailability enhancers towards biodegradation of pyrene in hydrocarbon-contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 375:124295. [PMID: 39884207 DOI: 10.1016/j.jenvman.2025.124295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/03/2025] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
Hydrophobic organic compounds (HOCs), such as pyrene, pose significant challenges for microbial-based remediation in soil due to limited substrate availability and the sustainability of augmented microbes. Research targets are to investigate the potential of biofilm-forming bacterial cells to enhance pyrene bioavailability and biodegradation in two different hydrocarbon-contaminated soil microcosms, employing microbiological, molecular, and chemical analysis validated through statistical tools. The microcosm augmented with strong biofilm bacterial consortia (A) significantly enhanced pyrene availability by 1-1.5% compared to the weak biofilm consortia (B) and mixed consortia (AB). Analysis of 16 S rDNA amplicons revealed notable differences in bacterial community composition between consortia A and B augmented soil, with Proteobacteria as the dominant phylum. Taxonomic composition of soil microbiome predicted enhanced xenobiotic biodegradative potential of strong biofilm consortia (A) up to 20 days, exhibiting a higher abundance of functional genes related to upstream degradative pathway of PAHs, such as naphthalene dioxygenase (nahAa), PAH dioxygenase subunit genes (nidA, nidB), extradiol dioxygenase (phdF) and aldehyde dehydrogenase (nidD). Our study highlights the significant role of biofilm-forming bacteria as "bioavailability enhancers," for high molecular weight PAHs like pyrene, in contaminated soils with their implications for designing future sustainable bioremediation programs.
Collapse
Affiliation(s)
- Prerna J Yesankar
- Sustainable Environmental Processes (Environmental Bioprocesses), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Asifa Qureshi
- Sustainable Environmental Processes (Environmental Bioprocesses), CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440 020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
5
|
Jiang QX, Wang ZX, Zhou X, Cao QF, Hu SQ, Luo JN, Deng WW, Li H. Dynamic distribution and accumulation of polycyclic aromatic hydrocarbons in Pueraria lobata during growth based on field experiment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117850. [PMID: 39923566 DOI: 10.1016/j.ecoenv.2025.117850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/20/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
The regulation investigation of the uptake, distribution, and accumulation of polycyclic aromatic hydrocarbons (PAHs) in the crop growing is essential for human health risk assessments. As an important crop with Chinese medicine homologous food function, Pueraria lobata (P. lobata) was selected as the model crop with rhizome as the products to explore the absorption, and distribution of PAHs under the natural field environment for the first time. After treated with PAHs in soil at different growth stages, the detailed PAHs in soil and tissue were analyzed. The results showed the agronomics traits of P. lobata had no obvious change after treated with PAHs, especially at the maturity stage. The accumulation of Σ16PAHs in the soil had obvious seasonal dependence, and increased by 31 %, 76 % and 90 % treated with low-, medium-, and high-dose treatment at maturity stage, respectively. The tissues absorption of PAHs were selective with the leaves preferring low-rings and roots for high-rings, due to high-rings PAH being difficult to migrate to the above-ground part through transpiration flow. Notably, low-dose PAHs treatment could promote the production of total polysaccharides and main isoflavone, while medium-dose and high-dose PAHs treatment inhibited their production. The above result confirmed that PAHs could be adsorbed by P. lobata with different routes, roots mainly absorbed PAHs by root uptake from soil, leaves mainly accumulated PAHs by the foliar uptake, and the absorbed PAHs could affect the quality of P. lobata. Based on these results, the concentration of PAHs in the field should be strictly monitored.
Collapse
Affiliation(s)
- Qing-Xiang Jiang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang 330115, China
| | - Zhi-Xin Wang
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang 330115, China
| | - Xiang Zhou
- Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang 330115, China; College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Qiu-Fang Cao
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang 330115, China
| | - Si-Qi Hu
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang 330115, China
| | - Jiang-Nan Luo
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang 330115, China
| | - Wen-Wen Deng
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang 330115, China.
| | - Hui Li
- Jiangxi Province Key Laboratory of Traditional Chinese Medicine Pharmacology, Institute of Traditional Chinese Medicine Health Industry, China Academy of Chinese Medical Sciences, Nanchang 330115, China; Jiangxi Health Industry Institute of Traditional Chinese Medicine, Nanchang 330115, China; Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
6
|
Gupta N, Koley A, Banerjee S, Ghosh A, Hoque RR, Balachandran S. Nanomaterial-mediated strategies for enhancing bioremediation of polycyclic aromatic hydrocarbons: A systematic review. HYBRID ADVANCES 2024; 7:None. [PMID: 39758813 PMCID: PMC11698305 DOI: 10.1016/j.hybadv.2024.100315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 01/07/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are pervasive organic pollutants in the environment that are formed as an outcome of partial combustion of organic matter. PAHs pose a significant threat to ecological systems and human health due to their cytotoxic and genotoxic effects. Therefore, an immediate need for effective PAH remediation methods is crucial. Although nanomaterials are effective for remediation of PAHs, concerns regarding environmental compatibility and sustainability remains. Therefore, this study emphasizes integration of nanomaterials with bioremediation methods, which might offer a more sustainable and ecofriendly approach to PAHs remediation. A systematic search was conducted through scholarly databases from 2013 to 2023. A total of 360 articles were scrutinized, among which 26 articles were selected that resonated with the application of nano-bioremediation. These literatures comprise both comparative analysis of bioremediation only as well as nano-bioremediation. There is an elevation of 18.9 % in PAHs removal of liquid-phase samples, when comparing bioremediation (52.2 %) with nano-bioremediation (71.1 %). A consistent trend was observed in soil samples, with bioremediation and nano-bioremediation that successfully remove PAHs, with 60.8 % and 75.1 % respectively, indicating a 14.3 % improvement. Furthermore, the review elaborated on the various features of nanomaterials that led to their efficiency in the bioremediation of PAH. The review also discussed the strategies of nano-bioremediation namely nanomaterial-assisted microbial degradation, nanomaterial-assisted enzyme-enhanced microbial activity, nanomaterial-immobilized microbial cells, nanomaterial-facilitated electron transfer, and even some eco-green approaches to remediate PAHs, like biogenic nanomaterial for PAHs.
Collapse
Affiliation(s)
- Nitu Gupta
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | - Apurba Koley
- Department of Environmental Studies, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Sandipan Banerjee
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague 165 00, Czech Republic
| | - Anudeb Ghosh
- Department of Environmental Studies, Visva-Bharati, Santiniketan 731235, West Bengal, India
| | - Raza Rafiqul Hoque
- Department of Environmental Science, Tezpur University, Tezpur 784028, Assam, India
| | | |
Collapse
|
7
|
Abdelshafy AM, Mahmoud AR, Abdelrahman TM, Mustafa MA, Atta OM, Abdelmegiud MH, Al-Asmari F. Biodegradation of chemical contamination by lactic acid bacteria: A biological tool for food safety. Food Chem 2024; 460:140732. [PMID: 39106807 DOI: 10.1016/j.foodchem.2024.140732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/09/2024]
Abstract
Chemical pollutants such as mycotoxins and pesticides exert harmful effects on human health such as inflammation, oxidative stress, and cancer. Several strategies were applied for food decontamination, including physicochemical and biological strategies. The present review comprehensively discussed the recent efforts related to the biodegradation of eight food chemical contaminants, including mycotoxins, acrylamide, biogenic amines, N-nitrosamines, polycyclic aromatic hydrocarbons, bisphenol A, pesticides, and heavy metals by lactic acid bacteria (LAB). Biological detoxification by LAB such as Lactobacillus is a promising approach to remove the risks related to the presence of chemical and environmental pollutants in foodstuffs. It is a safe, efficient, environmentally friendly, and low-cost strategy to remove hazardous compounds. LAB can directly decrease these chemical pollutants by degradation or adsorption. Also, it can indirectly reduce the content of these pollutants by reducing their precursors. Hence, LAB can contribute to reducing chemical pollutants in contaminated foods and enhance food safety.
Collapse
Affiliation(s)
- Asem M Abdelshafy
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Ahmed Rashad Mahmoud
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Talat M Abdelrahman
- Department of Plant Protection, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt.
| | - Mustafa Abdelmoneim Mustafa
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Omar Mohammad Atta
- Department of Botany and Microbiology, College of Science, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | - Mahmoud H Abdelmegiud
- Department of Food Science and Technology, Faculty of Agriculture, Al-Azhar University - Assiut Branch, Assiut 71524, Egypt.
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia.
| |
Collapse
|
8
|
Hussain B, Zhu H, Xiang C, Mengfei L, Zhu B, Liu S, Ma H, Pu S. Evaluation of the immobilized enzymes function in soil remediation following polycyclic aromatic hydrocarbon contamination. ENVIRONMENT INTERNATIONAL 2024; 194:109106. [PMID: 39571295 DOI: 10.1016/j.envint.2024.109106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 12/22/2024]
Abstract
The bioremediation of polycyclic aromatic hydrocarbon (PAHs) from soil utilizing microorganisms, enzymes, microbial consortiums, strains, etc. has attracted a lot of interest due to the environmentally friendly, and cost-effective features. Enzymes can efficiently break down PAHs in soil by hydroxylating the benzene ring, breaking the C-C bond, and catalyze the hydroxylation of a variety of benzene ring compounds via single-electron transfer oxidation. However, the practical application is limited by its instability and ease to loss function under harsh environmental conditions such as pH, temperature, and edaphic stress etc. Therefore, this paper focused on the techniques used to immobilize enzymes and remediate PAHs in soil. Moreover, previous research has not adequately covered this topic, despite the employment of several immobilized enzymes in aqueous solution cultures to remediate other types of organic pollutants. Bibliometric analysis further highlighted the research trends from 2000 to 2023 on this field of growing interest and identified important challenges regarding enzyme stability and interaction with soil matrices. The findings indicated that immobilized enzymes may catalyzed PAHs via oxidation of OH groups in benzene rings, and generate benzyl radicals (i.e., •OH and •O2) that undergo further reaction and release water. As a result, the intermediate products of PAHs further catalyze by enzyme and enzyme induced microbes producing carbon dioxide and water. Meanwhile efficiency, activity, lifetime, resilience, and sustainability of immobilized enzyme need to be further improved for the large-scale and field-scale clean-up of PAHs polluted soils. This could be possible by integrating enzyme-based with microbial and plant-based remediation strategies. It can be coupled with another line of research focused on using a new set of support materials that can be derived from natural resources.
Collapse
Affiliation(s)
- Babar Hussain
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hongqing Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Chunyu Xiang
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Luo Mengfei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Bowei Zhu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shibin Liu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China
| | - Hui Ma
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Shengyan Pu
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China.
| |
Collapse
|
9
|
Xiao L, Zhao X, Yao J, Lu Q, Feng X, Wu S. Biodegradation and adsorption of benzo[a]pyrene by fungi-bacterial coculture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116811. [PMID: 39083873 DOI: 10.1016/j.ecoenv.2024.116811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
In this work, the relationship and kinetics of biodegradation and bio-adsorption of benzo[a]pyrene (BaP) by Bacillus and Ascomycota were explored, and the metabolites of BaP under mixed microbial coculture were analyzed and characterized. The results show that BaP was removed through both biosorption and biodegradation. Under mixed microbial coculture, biosorption played a significant role in the early stage and biodegradation was predominant in the later stage. During the removal of BaP, the fungi exhibited remarkable adsorption capabilities for BaP with an adsorption efficiency (AE) of 38.14 %, while bacteria had a best degradation for BaP with a degradation efficiency (DE) of 56.13 %. Under the mixed microbial culture, the removal efficiency (RE) of BaP by the synergistic action of fungi and bacteria reached up to 76.12 % within 15 days. Kinetics analysis illustrated that the degradation and adsorption process of BaP were well fit to the first-order and the pseudo-second-order kinetic models, respectively. The research on the relationship between degradation and adsorption during microbial removal of BaP, as well as the synergistic effects of fungi and bacteria, will provide a theoretical guidance for two or even synthetic microbial communities.
Collapse
Affiliation(s)
- Lei Xiao
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China; Mechano Chemistry Research Institute, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Xianghan Zhao
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Jinghua Yao
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Qi Lu
- Key Laboratory of Coal Processing and Efficient Utilization, Ministry of Education, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Xiujuan Feng
- Mechano Chemistry Research Institute, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
| | - Shengmin Wu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China.
| |
Collapse
|
10
|
Wang Y, Sun S, Liu Q, Su Y, Zhang H, Zhu M, Tang F, Gu Y, Zhao C. Characteristic microbiome and synergistic mechanism by engineering agent MAB-1 to evaluate oil-contaminated soil biodegradation in different layer soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:10802-10817. [PMID: 38212565 DOI: 10.1007/s11356-024-31891-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Bioremediation is a sustainable and pollution-free technology for crude oil-contaminated soil. However, most studies are limited to the remediation of shallow crude oil-contaminated soil, while ignoring the deeper soil. Here, a high-efficiency composite microbial agent MAB-1 was provided containing Bacillus (naphthalene and pyrene), Acinetobacter (cyclohexane), and Microbacterium (xylene) to be synergism degradation of crude oil components combined with other treatments. According to the crude oil degradation rate, the up-layer (63.64%), middle-layer (50.84%), and underlying-layer (54.21%) crude oil-contaminated soil are suitable for bioaugmentation (BA), biostimulation (BS), and biostimulation+bioventing (BS+BV), respectively. Combined with GC-MS and carbon number distribution analysis, under the optimal biotreatment, the degradation rates of 2-ring and 3-ring PAHs in layers soil were about 70% and 45%, respectively, and the medium and long-chain alkanes were reduced during the remediation. More importantly, the relative abundance of bacteria associated with crude oil degradation increased in each layer after the optimal treatment, such as Microbacterium (2.10-14%), Bacillus (2.56-12.1%), and Acinetobacter (0.95-12.15%) in the up-layer soil; Rhodococcus (1.5-6.9%) in the middle-layer soil; and Pseudomonas (3-5.4%) and Rhodococcus (1.3-13.2%) in the underlying-layer soil. Our evaluation results demonstrated that crude oil removal can be accelerated by adopting appropriate bioremediation approach for different depths of soil, providing a new perspective for the remediation of actual crude oil-contaminated sites.
Collapse
Affiliation(s)
- Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Shuo Sun
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China.
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China.
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Hang Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Fang Tang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Yingying Gu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| | - Chaocheng Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, People's Republic of China
- State Key Laboratory of Petroleum Pollution Control, No.66 Changjiang West Road, Huangdao District, Qingdao, 266580, People's Republic of China
| |
Collapse
|