1
|
Nohesara M, Malekzadeh E, Motlagh MB, Tatari A. Effect of nanocellulose-assisted green-synthesized iron nanoparticles and conventional sources of Fe on pot marigold plants symbiotically with arbuscular mycorrhizal fungus (Funneliformis mosseae). BMC PLANT BIOLOGY 2025; 25:721. [PMID: 40437364 PMCID: PMC12117787 DOI: 10.1186/s12870-025-06758-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Accepted: 05/21/2025] [Indexed: 06/01/2025]
Abstract
The objective of this study was to investigate the effect of nanocellulose-assisted green-synthesized iron nanoparticles (FeNPs) and conventional sources of Fe on pot marigold (Calendula officinalis L.) plants symbiotically with arbuscular mycorrhizal (AM). Pot marigold plants were inoculated with Funneliformis mosseae in addition to applying ferrous sulfate, FeNPs, and Fe-EDDHA at a rate of 10 mg Fe/kg soil, which follows the recommended rates of fertilizer. Their effects on plant growth, morphology, and physiological parameters were to be compared in the experiment. According to the findings, FeNPs significantly increased plant height, mean stem length, flower number, and total flower lifespan, especially when used with AMF. Most notably, this treatment produced the highest total chlorophyll content (6.62 mg/g FW), active iron in leaves (10 µg/g FW), essential oil (5.75%), mean number of leaves per plant (26.25), number of flowers per plant (6.5), and overall flower lifespan (92.75 days). It also produced superior mycorrhizal root colonization (52.47%). However, because of its lower uptake efficiency and rapid oxidation, ferrous sulfate showed limited performance. By enhancing iron bioavailability, the FeNPs promoted more effective metabolic activity and nutrient absorption. These results demonstrate the advantage of producing FeNPs as a bio-sustainable and biocompatible alternative for synthetic chelates, thus providing an interesting way to improve crop growth promotion in mycorrhizal cropping systems.
Collapse
Affiliation(s)
- Maryam Nohesara
- Department of Soil Science, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, PO Box: 4918943464, Gorgan, Golestan Province, Iran
| | - Elham Malekzadeh
- Department of Soil Science, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, PO Box: 4918943464, Gorgan, Golestan Province, Iran.
| | - Mojtaba Barani Motlagh
- Department of Soil Science, Faculty of Water and Soil Engineering, Gorgan University of Agricultural Sciences and Natural Resources, PO Box: 4918943464, Gorgan, Golestan Province, Iran
| | - Aliasghar Tatari
- Department of Cellulose Science and Engineering, Faculty of Wood and Paper Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
2
|
Ahmed MM, Mukheed M, Tariq T, Hasan M, Shaaban M, Mustafa G, Hatami M. Physio-biochemical insights into Arsenic stress mitigation regulated by Selenium nanoparticles in Gossypium hirsutum L. BMC PLANT BIOLOGY 2025; 25:482. [PMID: 40240948 PMCID: PMC12001592 DOI: 10.1186/s12870-025-06514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025]
Abstract
Arsenic is a nonessential toxic metalloid hampering the growth and development of plants. The cotton (Gossypium hirsutum) is of great economic importance in the textile industry as well as in the production of edible oil. In developing countries, especially Pakistan, the export of cotton has a distinct position. However, there has been a significant decline in cotton production over the past few years due to climate change, heavy metals induction and biotic stresses. A notable decrease in cotton growth and product is observed in response to arsenic stress. Selenium nanoparticles (Se NPS) were prepared by green chemistry approach and characterized by UV-Vis, FTIR, and XRD to mitigate the heavy metals induced toxicity in cotton seedling. Results shows that arsenic toxicity causes a drastic decrease in photosynthesis, phenolics, proteins, growth of seedlings, relative water content, and overall plant biomass. However, these physio-biochemical attributes were upregulated by applications of Se NPs. Moreover, As stress causes severe oxidative damage by overproduction of MDA, H2O2 and reactive oxygen species (ROS). The supplementation of SeNPs positively regulate the As stress in cotton seedlings by altering important antioxidant enzymes involved in ROS detoxification such as SOD, POD, and CAT. Se NPs ameliorate the toxicity by increasing activities of enzymatic and non-enzymatic antioxidants. The accumulation of As in roots alter the architecture of roots including reduced branching of roots. Current results suggest that the applications of selenium nanoparticles especially 20 mg/L concentration confidently alleviate the As induced toxicity in cotton seedlings.
Collapse
Affiliation(s)
- Muhammad Mahmood Ahmed
- Department of Bioinformatics, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Mukheed
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Tuba Tariq
- Department of Biochemistry, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Murtaza Hasan
- Department of Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Shaaban
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Ghazala Mustafa
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, 45320, Pakistan
- Department of Horticulture, Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Zhejiang University, Hangzhou, 310058, China
| | - Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
- Institute of Nanoscience and Nanotechnology, Arak University, Arak, 38156-8-8349, Iran.
| |
Collapse
|
3
|
Pandey K, Dasgupta CN. Role of nanobionics to improve the photosynthetic productivity in plants and algae: an emerging approach. 3 Biotech 2025; 15:74. [PMID: 40060293 PMCID: PMC11885746 DOI: 10.1007/s13205-025-04244-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/16/2025] [Indexed: 04/13/2025] Open
Abstract
The domain of nanobionics has gained attention since its inception due to its potential applicability in plant, microalgal treatments, productivity enhancement. This review compares the intake and mobilization of nanoparticles (NPs) in plant and algal cell. In plants, NPs enter from root or other openings, and then carried by apoplastic or symplastic transport and accumulated in various parts, whereas in algae, NPs enter via endocytosis, passive transmission pathways, traverse the algal cell cytoplasm. This study demonstrated the mechanisms of metal-based NPs such as zinc (Zn), silver (Ag), iron (Fe), copper (Cu), titanium (Ti), and silica (Si) for seed priming or plant treatments to improve productivity. These metal NPs are used as nano-fertilizer for plant growths. It has also been observed that these NPs can reduce pathogenic infection and help to cope up with environmental stresses including heavy metals contamination such as arsenic (As), cadmium (Cd), chromium (Cr), and lead (Pb). Overall, the photosynthetic productivity increases through NPs as it increases ability to enhance light capture, improve electron transport, and optimize carbon fixation pathways and withstand stresses. These advancements not only elevate biomass production in plant improving agricultural output but also support the sustainable generation of biofuels and bioproducts from algae.
Collapse
Affiliation(s)
- Komal Pandey
- Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh 226028 India
| | - Chitralekha Nag Dasgupta
- Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, Uttar Pradesh 226028 India
| |
Collapse
|
4
|
Tahira S, Bahadur S, Lu X, Liu J, Wang Z. ZnONPs alleviate cadmium toxicity in pepper by reducing oxidative damage. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123796. [PMID: 39721396 DOI: 10.1016/j.jenvman.2024.123796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Cadmium (Cd) is a genotoxic heavy metal causing severe toxicity symptoms in plants, which has been a major threat to worldwide crop production. Recently, nanoparticles (NPs) have been employed as a novel strategy to facilitate the Cd stress and act as nano-fertilizers directly. Therefore, this study aims to explore the effects of zinc oxide nanoparticles (ZnONPs; 15 mg/L) on plant growth, photosynthetic activity, antioxidant activity and root morphology in Capsicum chinense Jacq. under Cd (CdCl2; 50 μM/L) stress. The pepper plants were treated with Cd stress for 14 days, and the treatment was given directly into the hydroponic solution, while ZnONPs were applied as foliar spray two times a day (9 a.m. - 3 p.m.). The results revealed that Cd stress inhibited plant growth and biomass by impairing photosynthesis in photosystem function, gas exchange parameters, root activity, and morphology. In contrast, ZnONPs application notably reinforced the plant growth traits, increased photosynthesis efficiency in terms of chlorophyll content, SPAD index, gas exchange parameters and PSII maximum efficiency (Fv/Fm) and decreased Cd accumulation in leaf and root by 30% and 75%. Furthermore, ZnONPs efficiently restricted the hydrogen peroxide, superoxide ion (H2O2, O2•-). They restored cellular integrity (less MDA production) by triggering the antioxidant enzyme activities such as superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX) and glutathione reductase (GR), protein content, sugar level and proline content. Besides, ZnONPs treatment enhanced secondary metabolites (phenols and flavonoids) contents and these metabolites potentially restricted excess H2O2 accumulation. In conclusion, our findings deciphered the potential functions of ZnONPs in alleviating Cd-induced phytotoxicity in pepper plants by boosting biomass production, photosynthesis, secondary metabolism and reducing oxidative stress.
Collapse
Affiliation(s)
- Sidra Tahira
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Saraj Bahadur
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Xu Lu
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Jiancheng Liu
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China
| | - Zhiwei Wang
- National Key Laboratory for Tropical Crop Breeding, Sanya Institute of Breeding and Multiplication, Hainan University, Sanya, 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou, 570228, China.
| |
Collapse
|
5
|
Chang J, Shao X, Wang X, Liu J, Wu J, Zeeshan M, Zhu S, Liu P, Miao X, Du P, Zhang Z, Zhang P. pH-Responsive MOF Nanoparticles Equipped with Hydrophilic "Armor" Assist Fungicides in Controlling Peanut Southern Blight. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59962-59978. [PMID: 39449285 DOI: 10.1021/acsami.4c13638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The development of novel, safe, and efficient pest and disease control technologies for agricultural crops remains a pivotal area of research. In this study, by combining ZIF-8 and ZIF-90, a water-stable, pH-responsive bilayer MOF nanoparticle (NP) named Z8@Z90 was created, and tebuconazole (TEB) was added to form T@Z8@Z90, used for controlling peanut southern blight. The loading efficiency of TEB within the T@Z8@Z90 reached 26.15%, enabling rapid release in acidic environments triggered by oxalic acid (OA) secreted by Sclerotium rolfsii. In vitro experiments showed that T@Z8@Z90 can regulate the oxalic acid secretion of S. rolfsii and destroy its cell membrane structure. Additional experiments revealed that T@Z8@Z90 reduced sclerotial formation, decreased the total protein content of sclerotia, and influenced their sensitivity to pesticides, thereby mitigating the risk of reinfection by S. rolfsii. Notably, T@Z8@Z90 exhibited efficient translocation within peanut seedlings, being absorbed through the roots and transported to the leaves. At a concentration of 200 mg/L, T@Z8@Z90 exhibited high safety profiles for peanut seedling growth compared to the TEB suspension. Moreover, T@Z8@Z90 is safer for earthworms than TEB SC. Overall, this study offers valuable insights for the management of soil-borne diseases in agriculture and contributes to the advancement of sustainable agricultural practices.
Collapse
Affiliation(s)
- Jinzhe Chang
- State Key Laboratory of Green Pesticide, South China Agricultural University; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xuehua Shao
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Xin Wang
- State Key Laboratory of Green Pesticide, South China Agricultural University; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Jun Liu
- State Key Laboratory of Green Pesticide, South China Agricultural University; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Jian Wu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Lab of Food Science and Resources, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Muhammad Zeeshan
- State Key Laboratory of Green Pesticide, South China Agricultural University; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Shaoguan University, Shaoguan 512005, China
| | - Shiqi Zhu
- State Key Laboratory of Green Pesticide, South China Agricultural University; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Pengpeng Liu
- State Key Laboratory of Green Pesticide, South China Agricultural University; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoran Miao
- State Key Laboratory of Green Pesticide, South China Agricultural University; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Pengrui Du
- State Key Laboratory of Green Pesticide, South China Agricultural University; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhixiang Zhang
- State Key Laboratory of Green Pesticide, South China Agricultural University; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
| | - Peiwen Zhang
- State Key Laboratory of Green Pesticide, South China Agricultural University; Key Laboratory of Natural Pesticide & Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Shaoguan University, Shaoguan 512005, China
| |
Collapse
|
6
|
Mustafa G, Chaudhari SK, Manzoor M, Batool S, Hatami M, Hasan M. Zinc oxide nanoparticles mediated salinity stress mitigation in Pisum sativum: a physio-biochemical perspective. BMC PLANT BIOLOGY 2024; 24:835. [PMID: 39243061 PMCID: PMC11378595 DOI: 10.1186/s12870-024-05554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Salinity is the major abiotic stress among others that determines crop productivity. The primary goal is to examine the impact of Zinc Oxide Nanoparticles (ZnO NPs) on the growth, metabolism, and defense systems of pea plants in simulated stress conditions. The ZnO NPs were synthesized via a chemical process and characterized by UV, XRD, and SEM. The ZnO NPs application (50 and 100) ppm and salt (50 mM and 100 mM) concentrations were carried out individually and in combination. At 50 ppm ZnO NPs the results revealed both positive and negative effects, demonstrating an increase in the root length and other growth parameters, along with a decrease in Malondialdehyde (MDA) and hydrogen peroxide concentrations. However, different concentrations of salt (50 mM and 100 mM) had an overall negative impact on all assessed parameters. In exploring the combined effects of ZnO NPs and salt, various concentrations yielded different outcomes. Significantly, only 50 mM NaCl combined with 50 ppm ZnO NPs demonstrated positive effects on pea physiology, leading to a substantial increase in root length and improvement in other physiological parameters. Moreover, this treatment resulted in decreased levels of MAD, Glycine betaine, and hydrogen peroxide. Conversely, all other treatments exhibited negative effects on the assessed parameters, possibly due to the high concentrations of both stressors. The findings offered valuble reference data for research on the impact of salinity on growth parameters of future agriculture crop.
Collapse
Affiliation(s)
- Ghazala Mustafa
- Depatment of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Sunbal Khalil Chaudhari
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha, 42100, Pakistan
| | - Madiha Manzoor
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Sargodha Campus, Sargodha, 42100, Pakistan
| | - Sana Batool
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Mehrnaz Hatami
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak, 38156-8-8349, Iran.
| | - Murtaza Hasan
- Department of Biotechnology, Faculty of Chemical and Biological Sciences, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| |
Collapse
|
7
|
Kulasza M, Sielska A, Szenejko M, Soroka M, Skuza L. Effects of copper, and aluminium in ionic, and nanoparticulate form on growth rate and gene expression of Setaria italica seedlings. Sci Rep 2024; 14:15897. [PMID: 38987627 PMCID: PMC11237061 DOI: 10.1038/s41598-024-66921-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024] Open
Abstract
This study aims to determine the effects of copper, copper oxide nanoparticles, aluminium, and aluminium oxide nanoparticles on the growth rate and expression of ACT-1, CDPK, LIP, NFC, P5CR, P5CS, GR, and SiZIP1 genes in five days old seedling of Setaria italica ssp. maxima, cultivated in hydroponic culture. Depending on their concentration (ranging from 0.1 to 1.8 mg L-1), all tested substances had both stimulating and inhibiting effects on the growth rate of the seedlings. Copper and copper oxide-NPs had generally a stimulating effect whereas aluminium and aluminium oxide-NPs at first had a positive effect but in higher concentrations they inhibited the growth. Treating the seedlings with 0.4 mg L-1 of each tested toxicant was mostly stimulating to the expression of the genes and reduced the differences between the transcript levels of the coleoptiles and roots. Increasing concentrations of the tested substances had both stimulating and inhibiting effects on the expression levels of the genes. The highest expression levels were usually noted at concentrations between 0.4 and 1.0 mg/L of each metal and metal nanoparticle, except for SiZIP1, which had the highest transcript amount at 1.6 mg L-1 of Cu2+ and at 0.1-0.8 mg L-1 of CuO-NPs, and LIP and GR from the seedling treated with Al2O3-NPs at concentrations of 0.1 and 1.6 mg L-1, respectively.
Collapse
Affiliation(s)
- Mateusz Kulasza
- Institute of Biology, University of Szczecin, 71415, Szczecin, Poland.
| | - Anna Sielska
- Institute of Biology, University of Szczecin, 71415, Szczecin, Poland.
- Centre for Molecular Biology and Biotechnology, Institute of Biology, University of Szczecin, 71415, Szczecin, Poland.
- Doctoral School, University of Szczecin, 70383, Szczecin, Poland.
| | - Magdalena Szenejko
- Institute of Marine and Environmental Sciences, University of Szczecin, 71412, Szczecin, Poland
- Centre for Molecular Biology and Biotechnology, Institute of Biology, University of Szczecin, 71415, Szczecin, Poland
| | - Marianna Soroka
- Institute of Biology, University of Szczecin, 71415, Szczecin, Poland
- Department of Genetics and Genomics, Institute of Biology, University of Szczecin, 71412, Szczecin, Poland
| | - Lidia Skuza
- Institute of Biology, University of Szczecin, 71415, Szczecin, Poland
- Centre for Molecular Biology and Biotechnology, Institute of Biology, University of Szczecin, 71415, Szczecin, Poland
| |
Collapse
|