1
|
Amyloidogenesis and Neurotrophic Dysfunction in Alzheimer’s Disease: Do They have a Common Regulating Pathway? Cells 2022; 11:cells11203201. [PMID: 36291068 PMCID: PMC9600014 DOI: 10.3390/cells11203201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/07/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
The amyloid cascade hypothesis has predominately been used to describe the pathogenesis of Alzheimer’s disease (AD) for decades, as Aβ oligomers are thought to be the prime cause of AD. Meanwhile, the neurotrophic factor hypothesis has also been proposed for decades. Accumulating evidence states that the amyloidogenic process and neurotrophic dysfunction are mutually influenced and may coincidently cause the onset and progress of AD. Meanwhile, there are intracellular regulators participating both in the amyloidogenic process and neurotrophic pathways, which might be the common original causes of amyloidogenesis and neurotrophic dysfunction. In this review, the current understanding regarding the role of neurotrophic dysfunction and the amyloidogenic process in AD pathology is briefly summarized. The mutual influence of these two pathogenesis pathways and their potential common causal pathway are further discussed. Therapeutic strategies targeting the common pathways to simultaneously prevent amyloidogenesis and neurotrophic dysfunction might be anticipated for the disease-modifying treatment of AD.
Collapse
|
2
|
Chen FH, Wang Y, Jiang YX, Zhang GH, Wang ZM, Yang H. Clinical determination of serum nardilysin levels in predicting 30-day mortality among adults with malignant cerebral infarction. Clin Chim Acta 2019; 494:8-13. [PMID: 30871973 DOI: 10.1016/j.cca.2019.03.1608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Nardilysin, a kind of metalloendopeptidase, plays an important role in numerous inflammatory diseases. Malignant cerebral infarction (Glasgow coma scale score of <9) is associated with a high mortality risk. Here, we intended to investigate the relationship between serum nardilysin levels and prognosis of patients with malignant cerebral infarction. METHODS Serum nardilysin concentrations were quantified at malignant cerebral infarction diagnosis moment in 105 patients and at study entrance in 105 healthy controls. Association of nardilysin concentrations with 30-day mortality and overall survival was estimated using multivariate analyses. RESULTS The patients exhibited substantially increased serum nardilysin concentrations, as compared to the controls. Nardilysin concentrations were in pronounced correlation with Glasgow coma scale scores and serum C-reactive protein concentrations. Serum nardilysin was independently predictive of 30-day mortality and overall survival. Under receiver operating characteristic curve, its high discriminatory ability was found. CONCLUSIONS Rising serum nardilysin concentrations following malignant cerebral infarction are strongly related to stroke severity, inflammatory extent and a higher risk of mortality, substantializing serum nardilysin as a potential prognostic biomarker for malignant cerebral infarction.
Collapse
Affiliation(s)
- Fang-Hui Chen
- Department of Emergency Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou 310006, China.
| | - Yi Wang
- Department of Emergency Medicine, The Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, 261 Huansha Road, Hangzhou 310006, China
| | - Yi-Xiang Jiang
- Department of Neurology, The Huangyan Hospital of Wenzhou Medical University, 218 Hengjie Road, Taizhou 318020, China
| | - Gui-Hong Zhang
- Department of Neurology, The Huangyan Hospital of Wenzhou Medical University, 218 Hengjie Road, Taizhou 318020, China
| | - Zhi-Min Wang
- Department of Neurology, The Huangyan Hospital of Wenzhou Medical University, 218 Hengjie Road, Taizhou 318020, China
| | - Hui Yang
- Department of Neurologic Intensive Care Unit, The Huangyan Hospital of Wenzhou Medical University, 218 Hengjie Road, Taizhou 318020, China
| |
Collapse
|
3
|
Endres K, Deller T. Regulation of Alpha-Secretase ADAM10 In vitro and In vivo: Genetic, Epigenetic, and Protein-Based Mechanisms. Front Mol Neurosci 2017; 10:56. [PMID: 28367112 PMCID: PMC5355436 DOI: 10.3389/fnmol.2017.00056] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022] Open
Abstract
ADAM10 (A Disintegrin and Metalloproteinase 10) has been identified as the major physiological alpha-secretase in neurons, responsible for cleaving APP in a non-amyloidogenic manner. This cleavage results in the production of a neuroprotective APP-derived fragment, APPs-alpha, and an attenuated production of neurotoxic A-beta peptides. An increase in ADAM10 activity shifts the balance of APP processing toward APPs-alpha and protects the brain from amyloid deposition and disease. Thus, increasing ADAM10 activity has been proposed an attractive target for the treatment of neurodegenerative diseases and it appears to be timely to investigate the physiological mechanisms regulating ADAM10 expression. Therefore, in this article, we will (1) review reports on the physiological regulation of ADAM10 at the transcriptional level, by epigenetic factors, miRNAs and/or protein interactions, (2) describe conditions, which change ADAM10 expression in vitro and in vivo, (3) report how neuronal ADAM10 expression may be regulated in humans, and (4) discuss how this knowledge on the physiological and pathophysiological regulation of ADAM10 may help to preserve or restore brain function.
Collapse
Affiliation(s)
- Kristina Endres
- Clinic of Psychiatry and Psychotherapy, University Medical Center Johannes Gutenberg-University Mainz Mainz, Germany
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Neuroscience Center, Goethe-University Frankfurt/Main, Germany
| |
Collapse
|
4
|
Increased density of DISC1-immunoreactive oligodendroglial cells in fronto-parietal white matter of patients with paranoid schizophrenia. Eur Arch Psychiatry Clin Neurosci 2016; 266:495-504. [PMID: 26315603 DOI: 10.1007/s00406-015-0640-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/20/2015] [Indexed: 12/11/2022]
Abstract
Profound white matter abnormalities have repeatedly been described in schizophrenia, which involve the altered expression of numerous oligodendrocyte-associated genes. Transcripts of the disrupted-in-schizophrenia 1 (DISC1) gene, a key susceptibility factor in schizophrenia, have recently been shown to be expressed by oligodendroglial cells and to negatively regulate oligodendrocyte differentiation and maturation. To learn more about the putative role(s) of oligodendroglia-associated DISC1 in schizophrenia, we analyzed the density of DISC1-immunoreactive oligodendrocytes in the fronto-parietal white matter in postmortem brains of patients with schizophrenia. Compared with controls (N = 12) and cases with undifferentiated/residual schizophrenia (N = 6), there was a significantly increased density of DISC1-expressing glial cells in paranoid schizophrenia (N = 12), which unlikely resulted from neuroleptic treatment. Pathophysiologically, over-expression of DISC1 protein(s) in white matter oligodendrocytes might add to the reduced levels of two myelin markers, 2',3'-cyclic-nucleotide 3'-phosphodiesterase and myelin basic protein in schizophrenia. Moreover, it might significantly contribute to cell cycle abnormalities as well as to deficits in oligodendroglial cell differentiation and maturation found in schizophrenia.
Collapse
|
5
|
Triaca V, Sposato V, Bolasco G, Ciotti MT, Pelicci P, Bruni AC, Cupidi C, Maletta R, Feligioni M, Nisticò R, Canu N, Calissano P. NGF controls APP cleavage by downregulating APP phosphorylation at Thr668: relevance for Alzheimer's disease. Aging Cell 2016; 15:661-72. [PMID: 27076121 PMCID: PMC4933663 DOI: 10.1111/acel.12473] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/29/2016] [Indexed: 12/17/2022] Open
Abstract
NGF has been implicated in forebrain neuroprotection from amyloidogenesis and Alzheimer's disease (AD). However, the underlying molecular mechanisms are still poorly understood. Here, we investigated the role of NGF signalling in the metabolism of amyloid precursor protein (APP) in forebrain neurons using primary cultures of septal neurons and acute septo-hippocampal brain slices. In this study, we show that NGF controls the basal level of APP phosphorylation at Thr668 (T668) by downregulating the activity of the Ser/Thr kinase JNK(p54) through the Tyr kinase signalling adaptor SH2-containing sequence C (ShcC). We also found that the specific NGF receptor, Tyr kinase A (TrkA), which is known to bind to APP, fails to interact with the fraction of APP molecules phosphorylated at T668 (APP(pT668) ). Accordingly, the amount of TrkA bound to APP is significantly reduced in the hippocampus of ShcC KO mice and of patients with AD in which elevated APP(pT668) levels are detected. NGF promotes TrkA binding to APP and APP trafficking to the Golgi, where APP-BACE interaction is hindered, finally resulting in reduced generation of sAPPβ, CTFβ and amyloid-beta (1-42). These results demonstrate that NGF signalling directly controls basal APP phosphorylation, subcellular localization and BACE cleavage, and pave the way for novel approaches specifically targeting ShcC signalling and/or the APP-TrkA interaction in AD therapy.
Collapse
Affiliation(s)
- Viviana Triaca
- Institute of Cell Biology and Neuroscience National Research Council (CNR) Rome Italy
- European Brain Research Institute (EBRI Foundation) Rome Italy
| | - Valentina Sposato
- Institute of Cell Biology and Neuroscience National Research Council (CNR) Rome Italy
- European Brain Research Institute (EBRI Foundation) Rome Italy
| | - Giulia Bolasco
- European Molecular Biology Laboratory (EMBL) Monterotondo Italy
| | - Maria Teresa Ciotti
- Institute of Cell Biology and Neuroscience National Research Council (CNR) Rome Italy
| | | | - Amalia C. Bruni
- Regional Neurogenetic Center (CRN) ASP Catanzaro Lamezia Terme Italy
| | - Chiara Cupidi
- Regional Neurogenetic Center (CRN) ASP Catanzaro Lamezia Terme Italy
| | - Raffaele Maletta
- Regional Neurogenetic Center (CRN) ASP Catanzaro Lamezia Terme Italy
| | - Marco Feligioni
- European Brain Research Institute (EBRI Foundation) Rome Italy
| | - Robert Nisticò
- European Brain Research Institute (EBRI Foundation) Rome Italy
| | - Nadia Canu
- Institute of Cell Biology and Neuroscience National Research Council (CNR) Rome Italy
- Department of System Medicine University of Rome “Tor Vergata” Rome Italy
| | | |
Collapse
|
6
|
Tao H, Zhao J, Zhou X, Ma Z, Chen Y, Sun F, Cui L, Zhou H, Cai Y, Chen Y, Zhao S, Yao L, Zhao B, Li K. Promoter Variants of the ADAM10 Gene and Their Roles in Temporal Lobe Epilepsy. Front Neurol 2016; 7:108. [PMID: 27445971 PMCID: PMC4928100 DOI: 10.3389/fneur.2016.00108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 06/22/2016] [Indexed: 12/31/2022] Open
Abstract
Previous evidence has indicated that downregulated ADAM10 gives rise to epileptic seizures in Alzheimer's disease, and this study investigated the association of ADAM10 with temporal lobe epilepsy (TLE) from a genetic perspective. A total of 496 TLE patients and 528 healthy individuals were enrolled and genotyped for ADAM10 promoter variants (rs653765 G > A and rs514049 A > C). The alleles, genotypes, and haplotypes were then compared with clarify the association of these variants with TLE and their impacts upon age at onset, initial seizure types before treatments, and responses to drug treatments. In cohorts I, II, and I + II, the frequencies of the A allele and AA genotype at rs514049 were consistently increased in the cases compared with the controls (p = 0.020 and p = 0.009; p = 0.008 and p = 0.009; p = 0.000 and p = 0.000; q = 0.003 and q = 0.002, respectively). In contrast, the frequency of the AC haplotype (rs653765-rs514049) decreased in cohorts I + II (p = 0.013). Further analyses of the TLE patients indicated that the AA genotype functioned as a predisposing factor to drug-resistant TLE and the AC haplotype as a protective factor against generalized tonic-clonic seizures (GTCS) and drug-resistant TLE. This study is the first to demonstrate an association of the ADAM10 promoter variants with TLE. In particular, the AA genotype and AC haplotype showed their effects upon GTCS and drug-resistant TLE.
Collapse
Affiliation(s)
- Hua Tao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Jianghao Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China; Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Xu Zhou
- Clinical Research Center, Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Zhonghua Ma
- Department of Neurology, Beijing Tongren Hospital, Capital Medical University , Beijing , China
| | - Ying Chen
- Department of Neurology, Central People's Hospital of Zhanjiang , Zhanjiang, Guangdong , China
| | - Fuhai Sun
- Department of Neurology, The First People's Hospital of Pingdingshan , Pingdingshan, Hebei , China
| | - Lili Cui
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Haihong Zhou
- Department of Neurology, Affiliated Hospital of Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Yujie Cai
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Yanyan Chen
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Shu Zhao
- Department of Neurology, Affiliated Hospital of Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University , Harbin, Heilongjiang , China
| | - Bin Zhao
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University , Zhanjiang, Guangdong , China
| | - Keshen Li
- Guangdong Key Laboratory of Age-related Cardiac and Cerebral Diseases, Guangdong Medical University, Zhanjiang, Guangdong, China; Jinan University, Guangzhou, Guangdong, China
| |
Collapse
|
7
|
Hydrogen sulfide down-regulates BACE1 and PS1 via activating PI3K/Akt pathway in the brain of APP/PS1 transgenic mouse. Pharmacol Rep 2016; 68:975-82. [PMID: 27372924 DOI: 10.1016/j.pharep.2016.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 05/12/2016] [Accepted: 05/13/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Endogenous hydrogen sulfide (H2S) may have multiple physiological functions in brain. Our previous study showed that H2S improved spatial memory impairment and decreased the production of Aβ in APP/PS1 transgenic mice. However, many of the underlying mechanisms are not still being elucidated. The aim of the present study is to investigate the neuroprotective mechanisms of H2S involving in the activity of β-secretase (BACE1), γ-secretase (PS1) and α-secretase (ADAM17). METHODS Morris water maze was used to measure the behavior change. The levels of Aβ40 and Aβ42 were quantified using colorimetric ELISA kits and immunohistochemical analysis. The levels of BACE1, PS1, ADAM17, pAkt, pp38MAPK, pERK and pJNK were tested by Western blot analysis in normal mice, APP/PS1 transgenic mice and 50μmol/kg-NaHS-treated transgenic mice. On the basis of exogenous H2S treatment, LY294002 (inhibitors of PI3K/Akt) or PD98059 (inhibitors of MAPK/ERK) was injected into lateral cerebral ventricle. RESULTS The levels of BACE1, PS1 and pp38MAPK were increased and ADAM17 were decreased in the APP/PS1 transgenic mice. After intraperitoneal administration of an H2S donor (NaHS) into APP/PS1 mice, the levels of BACE1, PS1 and pp38MAPK were reduced and ADAM17 increased. The level of pp38 MAPKs, pAkt and pERK1/2 was increased in APP/PS1 transgenic mice compared with normal mice (p<0.05). There was no difference in the expression of pJNK between AD transgenic mice and normal mice (p>0.05). These results demonstrated that LY294002 inhibited the effect of H2S on decreasing the BACE1 and PS1, reducing the level of Aβ and improving memory impairment in APP/PS1 transgenic mice. PD98059 had no influence on the expression of BACE1 and PS1. CONCLUSIONS H2S inhibits the expression of BACE1 and PS1 by activating PI3K/Akt pathway in AD.
Collapse
|
8
|
Vincent B. Regulation of the α-secretase ADAM10 at transcriptional, translational and post-translational levels. Brain Res Bull 2016; 126:154-169. [PMID: 27060611 DOI: 10.1016/j.brainresbull.2016.03.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 03/25/2016] [Accepted: 03/30/2016] [Indexed: 12/19/2022]
Abstract
A tremendous gain of interest in the biology of ADAM10 emerged during the past 15 years when it has first been shown that this protease was able to target the α-site of the β-amyloid precursor protein (βAPP) and later confirmed as the main physiological α-secretase activity. However, beside its well-established implication in the so-called non-amyloidogenic processing of βAPP and its probable protective role against Alzheimer's disease (AD), this metalloprotease also cleaves many other substrates, thereby being implicated in various physiological as well as pathological processes such as cancer and inflammation. Thus, in view of possible effective therapeutic interventions, a full comprehension of how ADAM10 is up and down regulated is required. This review discusses our current knowledge concerning the implication of this enzyme in AD as well as its more recently established roles in other brain disorders and provides a detailed up-date on its various transcriptional, translational and post-translational modulations.
Collapse
Affiliation(s)
- Bruno Vincent
- Mahidol University, Institute of Molecular Biosciences, Nakhon Pathom 73170, Thailand; Centre National de la Recherche Scientifique, 2 rue Michel Ange, 75016 Paris, France.
| |
Collapse
|
9
|
Chen Y, Yang X, Chen T, Ji J, Lan L, Hu R, Ji H. Treatment with Akebia Saponin D Ameliorates Aβ1–42-Induced Memory Impairment and Neurotoxicity in Rats. Molecules 2016. [PMCID: PMC6273713 DOI: 10.3390/molecules21030323] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Amyloid-β peptide (Aβ) is known to be directly associated with the progressive neuronal death observed in Alzheimer’s disease (AD). However, effective neuroprotective approaches against Aβ neurotoxicity are still unavailable. In the present study, we investigated the protective effects of Akebia saponin D (ASD), a typical compound isolated from the rhizome of Dipsacus asper Wall, on Aβ1–42-induced impairment of learning and memory formation and explored the probable underlying molecular mechanisms. We found that treatment with ASD (30, 90 or 270 mg/kg) significantly ameliorated impaired spatial learning and memory in intracerebroventricularly (ICV) Aβ1–42-injected rats, as evidenced by a decrease tendency in escape latency during acquisition trials and improvement in exploratory activities in the probe trial in Morris water maze (MWM). Further study showed that ASD reversed Aβ1–42-induced accumulation of Aβ1–42 and Aβ1–40 in the hippocampus through down-regulating the expression of BACE and Presenilin 2 accompanied with increased the expression of TACE, IDE and LRP-1. Taken together, our findings suggested that ASD exerted therapeutic effects on Aβ-induced cognitive deficits via amyloidogenic pathway.
Collapse
Affiliation(s)
- Yongde Chen
- Department of Pharmacology, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, Jiangsu, China; (Y.C.); (T.C.); (J.J.); (L.L.)
| | - Xiaolin Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China;
| | - Tong Chen
- Department of Pharmacology, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, Jiangsu, China; (Y.C.); (T.C.); (J.J.); (L.L.)
| | - Jing Ji
- Department of Pharmacology, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, Jiangsu, China; (Y.C.); (T.C.); (J.J.); (L.L.)
| | - Li Lan
- Department of Pharmacology, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, Jiangsu, China; (Y.C.); (T.C.); (J.J.); (L.L.)
| | - Rong Hu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, Jiangsu, China
- Correspondence: (R.H.); (H.J.); Tel.: +86-137-7082-3968 (R.H.); +86-139-5161-5063 (H.J.)
| | - Hui Ji
- Department of Pharmacology, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, Jiangsu, China; (Y.C.); (T.C.); (J.J.); (L.L.)
- Correspondence: (R.H.); (H.J.); Tel.: +86-137-7082-3968 (R.H.); +86-139-5161-5063 (H.J.)
| |
Collapse
|
10
|
Bernstein HG, Steiner J, Bogerts B, Stricker R, Reiser G. Nardilysin, ADAM10, and Alzheimer's disease: of mice and men. Neurobiol Aging 2014; 35:e1. [DOI: 10.1016/j.neurobiolaging.2013.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 08/23/2013] [Indexed: 11/27/2022]
|
11
|
Del Campo M, Hoozemans JJM, Dekkers LL, Rozemuller AJ, Korth C, Müller-Schiffmann A, Scheltens P, Blankenstein MA, Jimenez CR, Veerhuis R, Teunissen CE. BRI2-BRICHOS is increased in human amyloid plaques in early stages of Alzheimer's disease. Neurobiol Aging 2014; 35:1596-604. [PMID: 24524963 DOI: 10.1016/j.neurobiolaging.2014.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 12/31/2013] [Accepted: 01/08/2014] [Indexed: 10/25/2022]
Abstract
BRI2 protein binds amyloid precursor protein to halt amyloid-β production and inhibits amyloid-β aggregation via its BRICHOS-domain suggesting a link between BRI2 and Alzheimer's disease (AD). Here, we investigate the possible involvement of BRI2 in human AD pathogenesis. BRI2 containing BRICHOS-domain was increased up to 3-fold in AD hippocampus (p = 0.003, n = 14/group). Immunohistochemistry showed BRI2 deposits associated with amyloid-β plaques in early pathologic stages (Braak-III; Thal-2/3). We observed a decrease in the protein levels of ADAM10 (p = 0.02) and furin (p = 0.066), as well as an increase in SPPL2b (p < 0.0001) in AD hippocampus. Because these enzymes are involved in BRI2 processing, their changes may lead to aberrant processing of BRI2 promoting its deposition and likely affecting BRI2 function. Loss of BRI2 function in AD was supported by the decreased presence of BRI2-amyloid precursor protein complexes in the hippocampus of AD patients compared with control subjects. In conclusion, our data obtained from human samples indicate that in early stages of AD there is an increased deposition of BRI2, which likely leads to impaired BRI2 function thereby influencing AD pathophysiology.
Collapse
Affiliation(s)
- Marta Del Campo
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands; Neurochemistry Laboratory, VU University Medical Center, Amsterdam, the Netherlands; Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands.
| | - Jeroen J M Hoozemans
- Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands
| | - Lois-Lee Dekkers
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands; Neurochemistry Laboratory, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Carsten Korth
- Department of Neuropathology, Heinrich Heine University Medical School, Düsseldorf, Germany
| | | | - Philip Scheltens
- Alzheimer Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Marinus A Blankenstein
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands; Neurochemistry Laboratory, VU University Medical Center, Amsterdam, the Netherlands
| | - Connie R Jimenez
- Department of Medical Oncology and OncoProteomics Laboratory, VU University Medical Center, Amsterdam, the Netherlands
| | - Robert Veerhuis
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands; Neurochemistry Laboratory, VU University Medical Center, Amsterdam, the Netherlands; Department of Pathology, VU University Medical Center, Amsterdam, the Netherlands; Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, VU University Medical Center, Amsterdam, the Netherlands; Neurochemistry Laboratory, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
12
|
Bernstein HG, Stricker R, Dobrowolny H, Steiner J, Bogerts B, Trübner K, Reiser G. Nardilysin in human brain diseases: both friend and foe. Amino Acids 2013; 45:269-78. [PMID: 23604405 DOI: 10.1007/s00726-013-1499-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 04/06/2013] [Indexed: 10/26/2022]
Abstract
Nardilysin is a metalloprotease that cleaves peptides, such as dynorphin-A, α-neoendorphin, and glucagon, at the N-terminus of arginine and lysine residues in dibasic moieties. It has various functionally important molecular interaction partners (heparin-binding epidermal growth factor-like growth factor, tumour necrosis factor-α-converting enzyme, neuregulin 1, beta-secretase 1, malate dehydrogenase, P42(IP4)/centaurin-α1, the histone H3 dimethyl Lys4, and others) and is involved in a plethora of normal brain functions. Less is known about possible implications of nardilysin for brain diseases. This review, which includes some of our own recent findings, attempts to summarize the current knowledge on possible roles of nardilysin in Alzheimer disease, Down syndrome, schizophrenia, mood disorders, alcohol abuse, heroin addiction, and cancer. We herein show that nardilysin is a Janus-faced enzyme with regard to brain pathology, being probably neuropathogenic in some diseases, but neuroprotective in others.
Collapse
Affiliation(s)
- H-G Bernstein
- Department of Psychiatry, Otto-v.-Guericke University Magdeburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
13
|
Decreased expression of nardilysin in SH-SY5Y cells under ethanol stress and reduced density of nardilysin-expressing neurons in brains of alcoholics. J Psychiatr Res 2013; 47:343-9. [PMID: 23219461 DOI: 10.1016/j.jpsychires.2012.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 10/05/2012] [Accepted: 11/09/2012] [Indexed: 11/23/2022]
Abstract
There is evidence for a genetic link between the metalloendopeptidase nardilysin and alcohol dependence, but the functional implication of the enzyme in alcoholism is unknown. Interestingly, some of the enzyme's substrates and interaction partners are altered in neural and non-neural tissues under the influence of ethanol consumption. To learn more about putative roles of nardilysin in alcohol dependence we studied the expression of the enzyme protein in human neuroblastoma cells under chronic ethanol exposure as well as in four brain regions of alcoholics and matched controls. Cultured SH-SY5Y cells were exposed for 96 h to two different concentrations of ethanol (50 and 200 mM). Nardilysin expression was determined using Western blotting with densitometric analysis. Furthermore, we morphometrically studied the cellular expression of nardilysin in postmortem brains of eight chronic alcoholics and nine controls by counting the number of nardilysin-immunopositive neurons in left frontal limbic area, Nuc. basalis of Meynert, paraventricular and supraoptic hypothalamic nuclei and calculating numerical cell densities. Nardilysin expression was significantly reduced after 96 h of SH-SY5Y cells exposure to 200 mM ethanol. In human brains nardilysin protein was localized to multiple neurons. In heavy drinkers there was a significantly reduced density of nardilysin immunoreactive neurons in Nuc. basalis of Meynert, paraventricular, and supraoptic nuclei. The alcohol-dependent reduction of nardilysin in cell culture and nervous tissue points to an implication of the enzyme in the pathophysiology of alcoholism.
Collapse
|
14
|
Bekris LM, Lutz F, Li G, Galasko DR, Farlow MR, Quinn JF, Kaye JA, Leverenz JB, Tsuang DW, Montine TJ, Peskind ER, Yu CE. ADAM10 expression and promoter haplotype in Alzheimer's disease. Neurobiol Aging 2012; 33:2229.e1-2229.e9. [PMID: 22572541 DOI: 10.1016/j.neurobiolaging.2012.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 03/20/2012] [Accepted: 03/29/2012] [Indexed: 10/28/2022]
Abstract
Alzheimer's disease is confirmed at autopsy according to the accumulation of brain neuritic plaques and neurofibrillary tangles in the brain. Neuritic plaques contain amyloid-β (Aβ) and lower levels of Aβ correspond to an increase in ADAM10 α-secretase activity. ADAM10 α-secretase activity produces a soluble amyloid precursor protein (APP) alpha (sAPPα) product and negates the pathological production of Aβ. In this investigation, it was hypothesized that genetic variation with the ADAM10 promoter is associated with ADAM10 expression levels as well as cerebrospinal fluid sAPPα levels. Results from this investigation suggest that the ADAM10 rs514049-rs653765 C-A promoter haplotype is associated with: (1) higher CSF sAPPα levels in cognitively normal controls compared with Alzheimer's disease (AD) patients, (2) higher postmortem brain hippocampus, but not cerebellum, ADAM10 protein levels in subjects with low plaque scores compared with those with high plaque scores, and (3) higher promoter activity for promoter-only reporter constructs compared with promoter 3' untranslated region (3'UTR) constructs in the human neuroblastoma SHSY5Y cell line, but not in HepG2 or U118 cell lines. Taken together, these findings suggest that ADAM10 expression is modulated according to a promoter haplotype that is influenced in a brain region- and cell type-specific manner.
Collapse
Affiliation(s)
- Lynn M Bekris
- Geriatric Research, Education, and Clinical Center (GRECC), VA Puget Sound Health Care System, Seattle, WA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Raman D, Milatovic SZ, Milatovic D, Splittgerber R, Fan GH, Richmond A. Chemokines, macrophage inflammatory protein-2 and stromal cell-derived factor-1α, suppress amyloid β-induced neurotoxicity. Toxicol Appl Pharmacol 2011; 256:300-13. [PMID: 21704645 PMCID: PMC3236026 DOI: 10.1016/j.taap.2011.06.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 11/26/2022]
Abstract
Alzheimer's disease (AD) is characterized by a progressive cognitive decline and accumulation of neurotoxic oligomeric peptides amyloid-β (Aβ). Although the molecular events are not entirely known, it has become evident that inflammation, environmental and other risk factors may play a causal, disruptive and/or protective role in the development of AD. The present study investigated the ability of the chemokines, macrophage inflammatory protein-2 (MIP-2) and stromal cell-derived factor-1α (SDF-1α), the respective ligands for chemokine receptors CXCR2 and CXCR4, to suppress Aβ-induced neurotoxicity in vitro and in vivo. Pretreatment with MIP-2 or SDF-1α significantly protected neurons from Aβ-induced dendritic regression and apoptosis in vitro through activation of Akt, ERK1/2 and maintenance of metalloproteinase ADAM17 especially with SDF-1α. Intra-cerebroventricular (ICV) injection of Aβ led to reduction in dendritic length and spine density of pyramidal neurons in the CA1 area of the hippocampus and increased oxidative damage 24h following the exposure. The Aβ-induced morphometric changes of neurons and increase in biomarkers of oxidative damage, F(2)-isoprostanes, were significantly inhibited by pretreatment with the chemokines MIP-2 or SDF-1α. Additionally, MIP-2 or SDF-1α was able to suppress the aberrant mislocalization of p21-activated kinase (PAK), one of the proteins involved in the maintenance of dendritic spines. Furthermore, MIP-2 also protected neurons against Aβ neurotoxicity in CXCR2-/- mice, potentially through observed up regulation of CXCR1 mRNA. Understanding the neuroprotective potential of chemokines is crucial in defining the role for their employment during the early stages of neurodegeneration.
Collapse
Affiliation(s)
- Dayanidhi Raman
- Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - Snjezana-Zaja Milatovic
- Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - Dejan Milatovic
- Department of Pediatrics / Pediatric Toxicology, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - Ryan Splittgerber
- Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232
| | - Guo-Huang Fan
- Department of Neurobiology and Neurotoxicology, Meharry Medical College, Nashville, TN 37221
| | - Ann Richmond
- VA Medical Center, Nashville, TN
- Department of Cancer Biology, Vanderbilt University, School of Medicine, Nashville, TN 37232
| |
Collapse
|
16
|
Borrmann C, Stricker R, Reiser G. Tubulin potentiates the interaction of the metalloendopeptidase nardilysin with the neuronal scaffold protein p42IP4/centaurin-α1 (ADAP1). Cell Tissue Res 2011; 346:89-98. [PMID: 21972134 DOI: 10.1007/s00441-011-1245-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 09/12/2011] [Indexed: 11/25/2022]
Abstract
We found colocalization of the neuronal protein p42(IP4) (centaurin-α1; ArfGAP with dual pleckstrin homology domain [ADAP1]), the metalloendopeptidase nardilysin (NRD; involved in axonal maturation and myelination) and tubulin in the cytosol and at the plasma membrane of SH-SY5Y neuroblastoma cells. To examine the importance of tubulin for the interaction of NRD with p42(IP4), we treated cells with nocodazole, which interferes with tubulin polymerization. Nocodazole did not affect the colocalization of p42(IP4) and tubulin but caused a clear redistribution of the proteins in cells, so that the colocalization of p42(IP4), tubulin and NRD was visible exclusively in multiple foci. To reveal the mechanism of the interaction between NRD, p42(IP4) and tubulin observed in neuronal cells, we performed Far-Western blotting, a technique that directly detects protein-protein interactions on Western blots. This technique demonstrated that tubulin enhanced the binding of NRD to functionally renatured p42(IP4). The mutation of a highly conserved cysteine residue in NRD to alanine abolished the potentiation by tubulin. NRD lacking the characteristic acidic domain was able to bind p42(IP4) but addition of tubulin did not significantly potentiate the binding of this deletion mutant to p42(IP4). A function-abolishing mutation of the Zn(2+)-binding motif of NRD did not affect the potentiation by tubulin. Thus, the capacity of tubulin to enhance the interaction between p42(IP4) and NRD together with the known interaction of p42(IP4) with F-actin support the novel notion that p42(IP4) plays a possible role as a linker between the two networks, actin and tubulin, in neural cells.
Collapse
Affiliation(s)
- Claudia Borrmann
- Institut für Neurobiochemie, Medizinische Fakultät der Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany
| | | | | |
Collapse
|
17
|
Abstract
A decade ago, a disintegrin and metalloproteinase 10 (ADAM10) was identified as an alpha-secretase and as a key proteinase in the processing of the amyloid precursor protein. Accordingly, the important role that it plays in Alzheimer's disease was manifested. Animal models with an overexpression of ADAM10 revealed a beneficial profile of the metalloproteinase with respect to learning and memory, plaque load and synaptogenesis. Therefore, ADAM10 presents a worthwhile target with respect to the treatment of a neurodegenerative disease such as Morbus Alzheimer. Initially, ADAM10 was suggested to be an enzyme, shaping the extracellular matrix by cleavage of collagen type IV, or to be a tumour necrosis factor alpha convertase. In a relatively short time, a wide variety of additional substrates (with amyloid precursor protein probably being the most prominent) has been identified and the search is still ongoing. Hence, any side effects concerning the therapeutic enhancement of ADAM10 alpha-secretase activity have to be considered. The present review summarizes our knowledge about the structure and function of ADAM10 and highlights the opportunities for enhancing the expression and/or activity of the alpha-secretase as a therapeutic target.
Collapse
Affiliation(s)
- Kristina Endres
- Department of Psychiatry and Psychotherapy, Clinical Research Group, Johannes Gutenberg-University, Mainz, Germany.
| | | |
Collapse
|