1
|
Amirjannati N, Asl MA, Hosseini E, Henkel R, Agharezaee N, Kafaeinezhad R, Rezadoost H, Gilany K. Analyzing free fatty acids in seminal plasma from asthenozoospermia patients undergoing antioxidant therapy. JBRA Assist Reprod 2025; 29:67-75. [PMID: 39873419 PMCID: PMC11867247 DOI: 10.5935/1518-0557.20240086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 11/30/2024] [Indexed: 01/30/2025] Open
Abstract
OBJECTIVE Different aspects of the functions of free fatty acid (FFA) in seminal plasma and their implications on male fertility are known. However, the profile of FFA in seminal plasma in asthenozoospermic patients following antioxidant therapy has not been studied. METHODS In this case-control study, the total antioxidant capacity (TAC) and FFA profile of the seminal plasma were determined in 80 patients (29 normozoospermic volunteers and 51 asthenozoospermic men) who were treated with antioxidants for three months. RESULTS The TAC level in normozoospermic men was significantly higher than in asthenozoospermic men before and after antioxidant therapy with even lower values after the treatment (p=0.0001). The most abundant identified FFAs in seminal plasma were palmitic acid, vaccenic acid, eicosatrienoic acid, stearic acid, and myristoleic acid. Palmitic acid was lower in asthenozoospermic patients (p=0.0001), and antioxidant treatment restored its level to near-control levels. Compared to normozoospermic controls, the level of eicosatrienoic acid is significantly lower in asthenozoospermia patients before (p=0.01) and after treatment (p=0.0001). Additionally, following oral antioxidant supplementation, the FFA pattern in asthenozoospermic patients changes to the pattern observed in normozoospermic men. However, these changes are not statistically significant. CONCLUSIONS The TAC level in asthenozoospermic patients after antioxidant treatment did not change to the levels in the control group; it even dropped to a lower level following three months of treatment. Antioxidant treatment can change the level of the FFA compositions of seminal plasma.
Collapse
Affiliation(s)
- Naser Amirjannati
- Department of Andrology and Embryology, Reproductive Biotechnology
Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahdieh Aghabalazadeh Asl
- Department of Phytochemistry, Medicinal Plants and Drugs Research
Institute, Shahid Beheshti University, Tehran, Iran
| | - Elham Hosseini
- Zanjan Metabolic Diseases Research Center, Zanjan University of
Medical Sciences, Zanjan, Iran
- Department of Obstetrics and Gynecology, Mousavi Hospital, School
of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ralf Henkel
- LogixX Pharma, Theale, Berkshire, United Kingdom
- Department of Medical Bioscience, University of the Western Cape,
Bellville, South Africa
- Department of Metabolism, Digestion and Reproduction, Imperial
College London, London, United Kingdom
| | - Niloofar Agharezaee
- Monoclonal Antibody Research Center, Avicenna Research Institute
(ACECR), Tehran, Iran
- Department of Bioinformatics, Kish International Campus University
of Tehran, Kish, Iran
| | - Raheleh Kafaeinezhad
- Department of Biology, Faculty of Basic Sciences, University of
Maragheh, Maragheh, Iran
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research
Institute, Shahid Beheshti University, Tehran, Iran
| | - Kambiz Gilany
- Integrative Oncology Department, Breast Cancer Research Center,
Motamed Cancer Institute, ACECR, Tehran, Iran
| |
Collapse
|
2
|
Meacci E, Chirco A, Garcia-Gil M. Potential Vitamin E Signaling Mediators in Skeletal Muscle. Antioxidants (Basel) 2024; 13:1383. [PMID: 39594525 PMCID: PMC11591548 DOI: 10.3390/antiox13111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/28/2024] Open
Abstract
Vitamin E (Vit E) deficiency studies underline the relevance of this vitamin in skeletal muscle (SkM) homeostasis. The knowledge of the effectors and modulators of Vit E action in SkM cells is limited, especially in aging and chronic diseases characterized by a decline in musculoskeletal health. Vit E comprises eight fat-soluble compounds grouped into tocopherols and tocotrienols, which share the basic chemical structure but show different biological properties and potentials to prevent diseases. Vit E has antioxidant and non-antioxidant activities and both favorable and adverse effects depending on the specific conditions and tissues. In this review, we focus on the actual knowledge of Vit E forms in SkM functions and new potential signaling effectors (i.e., bioactive sphingolipids and myokines). The possible advantages of Vit E supplementation in counteracting SkM dysfunctions in sarcopenia and under microgravity will also be discussed.
Collapse
Affiliation(s)
- Elisabetta Meacci
- Department of Experimental and clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Firenze, Italy
- Interuniversity Institute of Myology, University of Florence, 50134 Firenze, Italy
| | - Antony Chirco
- Department of Experimental and clinical Biomedical Sciences “Mario Serio”, University of Florence, 50134 Firenze, Italy
| | - Mercedes Garcia-Gil
- Department of Biology, Unit of Physiology, University of Pisa, Via S. Zeno 31, 56127 Pisa, Italy;
| |
Collapse
|
3
|
Sex Differences in Cardiovascular Diseases: A Matter of Estrogens, Ceramides, and Sphingosine 1-Phosphate. Int J Mol Sci 2022; 23:ijms23074009. [PMID: 35409368 PMCID: PMC8999971 DOI: 10.3390/ijms23074009] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 12/30/2022] Open
Abstract
The medical community recognizes sex-related differences in pathophysiology and cardiovascular disease outcomes (CVD), culminating with heart failure. In general, pre-menopausal women tend to have a better prognosis than men. Explaining why this occurs is not a simple matter. For decades, sex hormones like estrogens (Es) have been identified as one of the leading factors driving these sex differences. Indeed, Es seem protective in women as their decline, during and after menopause, coincides with an increased CV risk and HF development. However, clinical trials demonstrated that E replacement in post-menopause women results in adverse cardiac events and increased risk of breast cancer. Thus, a deeper understanding of E-related mechanisms is needed to provide a vital gateway toward better CVD prevention and treatment in women. Of note, sphingolipids (SLs) and their metabolism are strictly related to E activities. Among the SLs, ceramide and sphingosine 1-phosphate play essential roles in mammalian physiology, particularly in the CV system, and appear differently modulated in males and females. In keeping with this view, here we explore the most recent experimental and clinical observations about the role of E and SL metabolism, emphasizing how these factors impact the CV system.
Collapse
|
4
|
Durani LW, Hamezah HS, Ibrahim NF, Yanagisawa D, Nasaruddin ML, Mori M, Azizan KA, Damanhuri HA, Makpol S, Wan Ngah WZ, Tooyama I. Tocotrienol-Rich Fraction of Palm Oil Improves Behavioral Impairments and Regulates Metabolic Pathways in AβPP/PS1 Mice. J Alzheimers Dis 2019; 64:249-267. [PMID: 29889072 PMCID: PMC6004929 DOI: 10.3233/jad-170880] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have recently shown that the tocotrienol-rich fraction (TRF) of palm oil, a mixture of vitamin E analogs, improves amyloid pathology in vitro and in vivo. However, precise mechanisms remain unknown. In this study, we examined the effects of long-term (10 months) TRF treatment on behavioral impairments and brain metabolites in (15 months old) AβPP/PS1 double transgenic (Tg) Alzheimer’s disease (AD) mice. The open field test, Morris water maze, and novel object recognition tasks revealed improved exploratory activity, spatial learning, and recognition memory, respectively, in TRF-treated Tg mice. Brain metabolite profiling of wild-type and Tg mice treated with and without TRF was performed using ultrahigh performance liquid chromatography (UHPLC) coupled to high-resolution accurate mass (HRAM)-orbitrap tandem mass spectrometry (MS/MS). Metabolic pathway analysis found perturbed metabolic pathways that linked to AD. TRF treatment partly ameliorated metabolic perturbations in Tg mouse hippocampus. The mechanism of this pre-emptive activity may occur via modulation of metabolic pathways dependent on Aβ interaction or independent of Aβ interaction.
Collapse
Affiliation(s)
- Lina Wati Durani
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| | - Hamizah Shahirah Hamezah
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| | - Nor Faeizah Ibrahim
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| | - Muhammad Luqman Nasaruddin
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Masaki Mori
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| | - Kamalrul Azlan Azizan
- Metabolomics Research Laboratory, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Wan Zurinah Wan Ngah
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu, Japan
| |
Collapse
|
5
|
Lipidomic adaptations of the Metarhizium robertsii strain in response to the presence of butyltin compounds. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:316-326. [DOI: 10.1016/j.bbamem.2018.06.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 02/07/2023]
|
6
|
Effects of Vitamin E on the Synthesis of Phospholipids and Brain Functions in Old Rats. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9733-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
7
|
Li Y, Peng Z, Wang C, Li L, Leng Y, Chen R, Yuan H, Zhou S, Zhang Z, Chen AF. Novel role of PKR in palmitate-induced Sirt1 inactivation and endothelial cell senescence. Am J Physiol Heart Circ Physiol 2018; 315:H571-H580. [PMID: 29906232 DOI: 10.1152/ajpheart.00038.2018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Endothelial cell senescence is regarded as a vital characteristic of cardiovascular diseases. Elevated palmitate (PA) is an independent risk factor of cardiovascular diseases, but its role in endothelial cell senescence is currently unknown. During the course of studying the prosenescent role of PA, we discovered a key role of dsRNA-dependent protein kinase [protein kinase R (PKR)] in endothelial senescence. Exposure of human umbilical vein endothelial cells (HUVECs) to PA-induced cell senescence is characterized by increased levels of senescence-associated β-galactose glucosidase activity, excessive production of reactive oxygen species production, impaired cellular proliferation, and G1 phase arrest. This phenomenon is associated with an increase of PKR autophosphorylation and decreased activity of sirtuin 1 (Sirt1), a pivotal antisenescent factor. PKR inactivation by PKR siRNA or its phosphorylation inhibitor 2-aminopurine significantly attenuated PA-induced HUVEC senescence by reversing Sirt1 activity and its downstream signaling. Moreover, to study the regulatory mechanism between PKR and Sirt1, we found that PKR promotes JNK activation to inhibit Sirt1 activity and that this effect could be reversed by the JNK inhibitor SP600125. These findings provide evidence that PKR mediates PA-induced HUVEC senescence by inhibiting Sirt1 signaling. Our study provides novel insights into the actions and mechanisms of PKR in endothelial senescence. NEW & NOTEWORTHY This study first provides a novel observation that dsRNA-dependent protein kinase (PKR) mediates palmitate-induced sirtuin 1 inactivation and subsequent human umbilical vein endothelial cell senescence. Most importantly, these new findings will provide a potential therapeutic strategy to improve free fatty acid-induced endothelial senescence by targeting PKR in cardiovascular diseases.
Collapse
Affiliation(s)
- Yapei Li
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhouyangfan Peng
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Chunle Wang
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Le Li
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Yiping Leng
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
| | - Ruifang Chen
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Cardiothoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hong Yuan
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Shenghua Zhou
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Zhang
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- The Center of Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Alex F. Chen
- Department of Cardiology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Center for Vascular Disease and Translational Medicine, the Third Xiangya Hospital, Central South University, Changsha, China
- Department of Surgery, University of Pittsburgh School of Medicine, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
8
|
Babenko NA, Shevereva VM, Gar’kavenko VV. Changes in the Sphingolipid Content in Tissues and Behavioral Modifications of Rats Subjected to Neurogenic Stress: Role of Sphingomyelinases. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Effects of Chronic Neurogenic Stress on Behavior of Rats and Contents of Sphingolipids in Their Brain and Peripheral Tissues. NEUROPHYSIOLOGY+ 2017. [DOI: 10.1007/s11062-017-9608-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Babenko NA, Kharchenko VS. Effects of inhibitors of key enzymes of sphingolipid metabolism on insulin-induced glucose uptake and glycogen synthesis in liver cells of old rats. BIOCHEMISTRY (MOSCOW) 2015; 80:104-12. [PMID: 25754045 DOI: 10.1134/s0006297915010125] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sphingolipids play an important role in the development of insulin resistance. Ceramides are the most potent inhibitors of insulin signal transduction. Ceramides are generated in response to stress stimuli and in old age. In this work, we studied the possible contribution of different pathways of sphingolipid metabolism in age-dependent insulin resistance development in liver cells. Inhibition of key enzymes of sphingolipid synthesis (serine palmitoyl transferase, ceramide synthase) and degradation (neutral and acidic SMases) by means of specific inhibitors (myriocin, fumonisin B1, imipramine, and GW4869) was followed with the reduction of ceramide level and partly improved insulin regulation of glucose metabolism in "old" hepatocytes. Imipramine and GW4869 decreased significantly the acidic and neutral SMase activities, respectively. Treatment of "old" cells with myriocin or fumonisin B1 reduced the elevated in old age ceramide and SM synthesis. Ceramide and SM levels and glucose metabolism regulation by insulin could be improved with concerted action of all tested inhibitors of sphingolipid turnover on hepatocytes. The data demonstrate that not only newly synthesized ceramide and SM but also neutral and acidic SMase-dependent ceramide accumulation plays an important role in development of age-dependent insulin resistance.
Collapse
Affiliation(s)
- N A Babenko
- Department of Physiology of Ontogenesis, Institute of Biology, Kharkov Karazin National University, Kharkov, 61077, Ukraine.
| | | |
Collapse
|
11
|
Effects of Aging and Experimentally Induced Modifications of Signal Pathways on Insulin-Induced Shifts of Glucose Metabolism in the Rat Neocortex. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9491-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Sauerbeck AD, Laws JL, Bandaru VVR, Popovich PG, Haughey NJ, McTigue DM. Spinal cord injury causes chronic liver pathology in rats. J Neurotrauma 2014; 32:159-69. [PMID: 25036371 DOI: 10.1089/neu.2014.3497] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic spinal cord injury (SCI) causes major disruption to peripheral organ innervation and regulation. Relatively little work has investigated these post-SCI systemic changes, however, despite considerable evidence that multiple organ system dysfunction contributes to chronic impairments in health. Because metabolic dysfunction is common after SCI and the liver is a pivotal site for metabolic homeostasis, we sought to determine if liver pathology occurs as a result of SCI in a rat spinal contusion model. Histologic evidence showed excess lipid accumulation in the liver for at least 21 days post-injury after cervical or midthoracic SCI. Lipidomic analysis revealed an acute increase in hepatic ceramides as well as chronically elevated lactosylceramide. Post-SCI hepatic changes also included increased proinflammatory gene expression, including interleukin (IL)-1α, IL-1β, chemokine ligand-2, and tumor necrosis factor-α mRNA. These were coincident with increased CD68+ macrophages in the liver through 21 days post-injury. Serum alanine transaminase, used clinically to detect liver damage, was significantly increased at 21 days post-injury, suggesting that early metabolic and inflammatory damage preceded overt liver pathology. Surprisingly, liver inflammation was even detected after lumbar SCI. Collectively, these results suggest that SCI produces chronic liver injury with symptoms strikingly similar to those of nonalcoholic steatohepatitis (fatty liver disease). These clinically significant hepatic changes after SCI are known to contribute to systemic inflammation, cardiovascular disease, and metabolic syndrome, all of which are more prevalent in persons with SCI. Targeting acute and prolonged hepatic pathology may improve recovery and reduce long-term complications after SCI.
Collapse
Affiliation(s)
- Andrew D Sauerbeck
- 1 Department of Neuroscience, The Ohio State University , Columbus, Ohio
| | | | | | | | | | | |
Collapse
|
13
|
Babenko NA, Shakhova EG. Long-term food restriction prevents aging-associated sphingolipid turnover dysregulation in the brain. Arch Gerontol Geriatr 2013; 58:420-6. [PMID: 24439723 DOI: 10.1016/j.archger.2013.12.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 12/10/2013] [Accepted: 12/18/2013] [Indexed: 12/24/2022]
Abstract
Abnormalities of sphingolipid turnover in the brain during normal aging and age-related neurological disorders were associated with the neurons loss and cognitive malfunction. Calorie restriction (CR) prevented age-related deficits in hippocampal long-term potentiation and improved cognitive function at old age. In the paper we investigated the ceramide and sphingomyelin (SM) levels in the brain regions, which are critical for learning and memory of 3- and 24-month-old rats, as well as the correction of sphingolipid turnover in the brain of old rats, by means of the CR diet and modulators of SM turnover. Using the [methyl-(14)C-choline]SM, the neutral, but not the acid SMase activity has been observed to increase in both the hippocampus and brain cortex of 24-month-old rats with respect to 3-month-old animals. Age-dependent changes of neutral SMase activities were associated with ceramide accumulation and SM level drop in the brain structures studied. Treatment of the rats with the CR diet or N-acetylcysteine (NAC) or α-tocopherol acetate, but not an inhibitor of acid SMase imipramine, reduced the ceramide content and neutral SMase activity in the hippocampus of 24-month-old animals with respect to control rats of the same age. These results suggest that redox-sensitive neutral SMase plays important role in SM turnover dysregulation in both the hippocampus and neocortex at old age and that the CR diet can prevent the age-dependent accumulation of ceramide mainly via neutral SMase targeting.
Collapse
Affiliation(s)
- Nataliya A Babenko
- Department of Physiology of Ontogenesis, Institute of Biology, Kharkov Karazin National University, 4 Svobody pl., 61077 Kharkov, Ukraine.
| | - Elena G Shakhova
- Department of Physiology of Ontogenesis, Institute of Biology, Kharkov Karazin National University, 4 Svobody pl., 61077 Kharkov, Ukraine
| |
Collapse
|