1
|
Bhatt NK, Adcock K, Miller CS, Cvancara DJ, Aboueisha MA, De Leon J, Alghezi M, Jaleel Z. Quantification of Vocal Fold Atrophy in an Aging Rat Model. Laryngoscope 2025. [PMID: 40265717 DOI: 10.1002/lary.32212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/24/2025] [Accepted: 04/03/2025] [Indexed: 04/24/2025]
Abstract
OBJECTIVES The primary objective of this pilot study was to compare vocal fold morphology between aged and non-aged adult rat vocal folds. Secondarily, we set out to quantify neurophysiologic and histologic differences. METHODS Four-month (non-aged) and 21-month (aged) adult Fischer 344xBrown Norway (F344xBN) hybrid rats were used. Vocal fold measurements including bowing index (BI), abduction angle, and normalized vocal fold width (NVFW) were quantified. Laryngeal evoked response studies were performed by stimulating the recurrent laryngeal nerve (RLN) and recording from the thyro-arytenoid (TA) muscle. Histology was performed on laryngeal muscles and the RLN. RESULTS Ten non-aged (4-month) vs. 10 aged (21-month) rat hemi-laryngeal preparations were included. The mean BI was higher in the aged group compared to the non-aged group, 5.02 ± 1.05 vs. 4.12 ± 1.05 units, respectively, and this difference approached statistical significance (difference 0.89 units, 95% CI: -0.10-1.80 units, p = 0.07). CMAP latency was significantly higher in the aged vs. non-aged group, 0.90 ± 0.05 ms compared to 0.84 ± 0.06 ms, respectively (difference 0.06 ms, 95% CI: 0.01-0.11 ms, p = 0.02). Mean % myelin between the non-aged and aged rats was 72.12% ± 8.55% and 65.41% ± 5.38%, respectively, mean difference -6.71% (95% CI: -13.72%-0.31%, p = 0.060). Mean cross-sectional area (CSA) of TA myofibers was significantly increased in the aged rats 81.6 μm2 (95% CI: 6.9-156.3 μm2, p = 0.034). CONCLUSIONS Laryngeal evoked responses showed a significant increase in the CMAP latency in aged rats compared to non-aged rats. There was an increase in BI and a decrease in myelination in the aged rat that approached statistical significance. Future adequately powered studies are needed to quantify the difference in endoscopic measures, neurophysiology, and histology. LEVEL OF EVIDENCE N/A.
Collapse
Affiliation(s)
- Neel K Bhatt
- Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kelson Adcock
- Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Carson S Miller
- Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - David J Cvancara
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine Suez Canal University, Ismailia, Egypt
- Department of Otolaryngology-Head and Neck Surgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mohamed A Aboueisha
- Department of Otolaryngology-Head and Neck Surgery, Faculty of Medicine Suez Canal University, Ismailia, Egypt
- Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, University of California Davis School of Medicine, Sacramento, California, USA
| | - Julio De Leon
- Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Mahdi Alghezi
- Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| | - Zaroug Jaleel
- Division of Laryngology, Department of Otolaryngology-Head and Neck Surgery, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
2
|
Cui X, Spanos M, Zhao C, Wan W, Cui C, Wang L, Xiao J. Mitochondrial Dysfunction in HFpEF: Potential Interventions Through Exercise. J Cardiovasc Transl Res 2025; 18:442-456. [PMID: 39863753 DOI: 10.1007/s12265-025-10591-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
HFpEF is a prevalent and complex type of heart failure. The concurrent presence of conditions such as obesity, hypertension, hyperglycemia, and hyperlipidemia significantly increase the risk of developing HFpEF. Mitochondria, often referred to as the powerhouses of the cell, are crucial in maintaining cellular functions, including ATP production, intracellular Ca2+ regulation, reactive oxygen species generation and clearance, and the regulation of apoptosis. Exercise plays a vital role in preserving mitochondrial homeostasis, thereby protecting the cardiovascular system from acute stress, and is a fundamental component in maintaining cardiovascular health. In this study, we review the mitochondrial dysfunction underlying the development and progression of HFpEF. Given the pivotal role of exercise in modulating cardiovascular diseases, we particularly focus on exercise as a potential therapeutic strategy for improving mitochondrial function. Graphical abstract Note: This picture was created with BioRender.com.
Collapse
Affiliation(s)
- Xinxin Cui
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China
| | - Michail Spanos
- Cardiovascular Division of the Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
- Albert Einstein College of Medicine, Department of Internal Medicine, NCB, Bronx, NY, USA
| | - Cuimei Zhao
- Department of Cardiology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Wensi Wan
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China
| | - Caiyue Cui
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China
| | - Lijun Wang
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China.
| | - Junjie Xiao
- Cardiac Regeneration and Ageing Lab, Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 226011, China.
- Institute of Cardiovascular Sciences, Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), School of Life Science, Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, China.
| |
Collapse
|
3
|
García-Mendívil L, Pérez-Zabalza M, Oliver-Gelabert A, Vallejo-Gil JM, Fañanás-Mastral J, Vázquez-Sancho M, Bellido-Morales JA, Vaca-Núñez AS, Ballester-Cuenca C, Diez E, Ordovás L, Pueyo E. Interindividual Age-Independent Differences in Human CX43 Impact Ventricular Arrhythmic Risk. RESEARCH (WASHINGTON, D.C.) 2023; 6:0254. [PMID: 38023417 PMCID: PMC10650968 DOI: 10.34133/research.0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023]
Abstract
Connexin 43 (CX43) is one of the major components of gap junctions, the structures responsible for the intercellular communication and transmission of the electrical impulse in the left ventricle. There is limited information on the histological changes of CX43 with age and their effect on electrophysiology, especially in humans. Here, we analyzed left ventricular biopsies from living donors starting at midlife to characterize age-related CX43 remodeling. We assessed its quantity, degree of lateralization, and spatial heterogeneity together with fibrotic deposition. We observed no significant age-related remodeling of CX43. Only spatial heterogeneity increased slightly with age, and this increase was better explained by biological age than by chronological age. Importantly, we found that CX43 features varied considerably among individuals in our population with no relevant relationship to age or fibrosis content, in contrast to animal species. We used our experimental results to feed computational models of human ventricular electrophysiology and to assess the effects of interindividual differences in specific features of CX43 and fibrosis on conduction velocity, action potential duration, and arrhythmogenicity. We found that larger amounts of fibrosis were associated with the highest arrhythmic risk, with this risk being increased when fibrosis deposition was combined with a reduction in CX43 amount and/or with an increase in CX43 spatial heterogeneity. These mechanisms underlying high arrhythmic risk in some individuals were not associated with age in our study population. In conclusion, our data rule out CX43 remodeling as an age-related arrhythmic substrate in the population beyond midlife, but highlight its potential as a proarrhythmic factor at the individual level, especially when combined with increased fibrosis.
Collapse
Affiliation(s)
- Laura García-Mendívil
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
| | - María Pérez-Zabalza
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
- Centro Universitario de la Defensa (CUD), Zaragoza 50090, Spain
| | - Antoni Oliver-Gelabert
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
| | - José María Vallejo-Gil
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Javier Fañanás-Mastral
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Manuel Vázquez-Sancho
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | | | | | - Carlos Ballester-Cuenca
- Department of Cardiovascular Surgery,
University Hospital Miguel Servet, Zaragoza 50009, Spain
| | - Emiliano Diez
- Institute of Experimental Medicine and Biology of Cuyo (IMBECU), CONICET, Mendoza 5500, Argentina
| | - Laura Ordovás
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
- Fundación Agencia Aragonesa para la Investigación y el Desarrollo (ARAID), Zaragoza 50018, Spain
| | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation group (BSICoS), Aragón Institute of Engineering Research,
University of Zaragoza, Zaragoza 50018, Spain
- BSICoS, Instituto de Investigación Sanitaria Aragón (IISA), Zaragoza 50018, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza 50018, Spain
| |
Collapse
|
4
|
Abstract
Gap junctions, comprising connexin proteins, create conduits directly coupling the cytoplasms of adjacent cells. Expressed in essentially all tissues, dynamic gap junction structures enable the exchange of small molecules including ions and second messengers, and are central to maintenance of homeostasis and synchronized excitability. With such diverse and critical roles throughout the body, it is unsurprising that alterations to gap junction and/or connexin expression and function underlie a broad array of age-related pathologies. From neurological dysfunction to cardiac arrhythmia and bone loss, it is hard to identify a human disease state that does not involve reduced, or in some cases inappropriate, intercellular communication to affect organ function. With a complex life cycle encompassing several key regulatory steps, pathological gap junction remodeling during ageing can arise from alterations in gene expression, translation, intracellular trafficking, and posttranslational modification of connexins. Connexin proteins are now known to "moonlight" and perform a variety of non-junctional functions in the cell, independent of gap junctions. Furthermore, connexin "hemichannels" on the cell surface can communicate with the extracellular space without ever coupling to an adjacent cell to form a gap junction channel. This chapter will focus primarily on gap junctions in ageing, but such non-junctional connexin functions will be referred to where appropriate and the full spectrum of connexin biology should be noted as potentially causative/contributing to some findings in connexin knockout animals, for example.
Collapse
Affiliation(s)
- Michael J Zeitz
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA.,FBRI Center for Vascular and Heart Research, Roanoke, VA, USA
| | - James W Smyth
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA. .,FBRI Center for Vascular and Heart Research, Roanoke, VA, USA. .,Department of Biological Sciences, College of Science, Virginia Tech, Blacksburg, VA, USA. .,Department of Basic Science Education, Virginia Tech Carilion School of Medicine, Roanoke, VA, USA.
| |
Collapse
|
5
|
Mudimela S, Vishwanath NK, Pillai A, Morales R, Marrelli SP, Barichello T, Giridharan VV. Clinical significance and potential role of trimethylamine N-oxide in neurological and neuropsychiatric disorders. Drug Discov Today 2022; 27:103334. [PMID: 35998800 PMCID: PMC10392962 DOI: 10.1016/j.drudis.2022.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/18/2022] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
In the past three decades, research on the gut microbiome and its metabolites, such as trimethylamines (TMA), trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), branched-chain amino acids (BCAAs), bile acids, tryptophan and indole derivatives, has attracted the attention of many scientists and industrialists. Among these metabolites, TMAO is produced from dietary choline, phosphatidylcholine, carnitine,andbetaine. TMAO and other gut metabolites, such as TMA and SCFAs, reach the brain by crossing the blood-brain barrier (BBB) and are involved in brain development, neurogenesis, and behavior. Gut-microbiota composition is influenced by diet, lifestyle, antibiotics, and age. Several studies have confirmed that altered TMAO levels contribute to metabolic, vascular, psychiatric, and neurodegenerative disorders. This review focuses on how altered TMAO levels impact oxidative stress, microglial activation, and the apoptosis of neurons, and may lead to neuroinflammation, which can subsequently result in the development of psychiatric, cognitive, and behavioral disorders.
Collapse
Affiliation(s)
- Sowjanya Mudimela
- Faculty of Pharmaceutical Sciences, PES University, HN-Campus, Bengaluru, Karnataka, India
| | | | - Anilkumar Pillai
- Pathophysiology of Neuropsychiatric Disorders Program, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center at Houston (UTHealth), Houston, TX, USA; Research and Development, Charlie Norwood VA Medical Center, Augusta, GA, USA; Department of Psychiatry and Health Behavior, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Rodrigo Morales
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Centro Integrativo de Biologia y Quimica Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | - Sean P Marrelli
- Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - Tatiana Barichello
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center at Houston (UTHealth), Houston, TX, USA; Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Experimental Physiopathology Laboratory, Graduate Program in Health Sciences, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Vijayasree V Giridharan
- Faillace Department of Psychiatry and Behavioral Sciences, Translational Psychiatry Program, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA.
| |
Collapse
|
6
|
Roh J, Hill JA, Singh A, Valero-Muñoz M, Sam F. Heart Failure With Preserved Ejection Fraction: Heterogeneous Syndrome, Diverse Preclinical Models. Circ Res 2022; 130:1906-1925. [PMID: 35679364 PMCID: PMC10035274 DOI: 10.1161/circresaha.122.320257] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents one of the greatest challenges facing cardiovascular medicine today. Despite being the most common form of heart failure worldwide, there has been limited success in developing therapeutics for this syndrome. This is largely due to our incomplete understanding of the biology driving its systemic pathophysiology and the heterogeneity of clinical phenotypes, which are increasingly being recognized as distinct HFpEF phenogroups. Development of efficacious therapeutics fundamentally relies on robust preclinical models that not only faithfully recapitulate key features of the clinical syndrome but also enable rigorous investigation of putative mechanisms of disease in the context of clinically relevant phenotypes. In this review, we propose a preclinical research strategy that is conceptually grounded in model diversification and aims to better align with our evolving understanding of the heterogeneity of clinical HFpEF. Although heterogeneity is often viewed as a major obstacle in preclinical HFpEF research, we challenge this notion and argue that embracing it may be the key to demystifying its pathobiology. Here, we first provide an overarching guideline for developing HFpEF models through a stepwise approach of comprehensive cardiac and extra-cardiac phenotyping. We then present an overview of currently available models, focused on the 3 leading phenogroups, which are primarily based on aging, cardiometabolic stress, and chronic hypertension. We discuss how well these models reflect their clinically relevant phenogroup and highlight some of the more recent mechanistic insights they are providing into the complex pathophysiology underlying HFpEF.
Collapse
Affiliation(s)
- Jason Roh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (J.R., A.S.)
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology) (J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Department of Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Abhilasha Singh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (J.R., A.S.)
| | - María Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., F.S.)
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., F.S.)
| |
Collapse
|
7
|
Sanchez K, Darling JS, Kakkar R, Wu SL, Zentay A, Lowry CA, Fonken LK. Mycobacterium vaccae immunization in rats ameliorates features of age-associated microglia activation in the amygdala and hippocampus. Sci Rep 2022; 12:2165. [PMID: 35140249 PMCID: PMC8828872 DOI: 10.1038/s41598-022-05275-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Aging and reduced exposure to environmental microbes can both potentiate neuroinflammatory responses. Prior studies indicate that immunization with the immunoregulatory and anti-inflammatory bacterium, Mycobacterium vaccae (M. vaccae), in aged rats limits neuroimmune activation and cognitive impairments. However, the mechanisms by which M. vaccae immunization ameliorates age-associated neuroinflammatory “priming” and whether microglia are a primary target remain unclear. Here, we investigated whether M. vaccae immunization protects against microglia morphological changes in response to aging. Adult (3 mos) and aged (24 mos) Fisher 344 × Brown Norway rats were immunized with either M. vaccae or vehicle once every week for 3 weeks. Aging led to elevated Iba1 immunoreactivity, microglial density, and deramification of microglia processes in the hippocampus and amygdala but not other brain regions. Additionally, aged rats exhibited larger microglial somas in the dorsal hippocampus, suggestive of a more activated phenotype. Notably, M. vaccae treatment ameliorated indicators of microglia activation in both the amygdala and hippocampus. While changes in morphology appeared to be region-specific, gene markers indicative of microglia activation were upregulated by age and lowered in response to M. vaccae in all brain regions evaluated. Taken together, these data suggest that peripheral immunization with M. vaccae quells markers of age-associated microglia activation.
Collapse
Affiliation(s)
- Kevin Sanchez
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St 3.510C, Austin, TX, 78712, USA
| | - Jeffrey S Darling
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St 3.510C, Austin, TX, 78712, USA
| | - Reha Kakkar
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St 3.510C, Austin, TX, 78712, USA
| | - Sienna L Wu
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St 3.510C, Austin, TX, 78712, USA
| | - Andrew Zentay
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St 3.510C, Austin, TX, 78712, USA
| | - Christopher A Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, 80309, USA.,Center for Neuroscience, University of Colorado Boulder, Boulder, CO, 80309, USA
| | - Laura K Fonken
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W Dean Keeton St 3.510C, Austin, TX, 78712, USA.
| |
Collapse
|
8
|
Dela Justina V, Miguez JSG, Priviero F, Sullivan JC, Giachini FR, Webb RC. Sex Differences in Molecular Mechanisms of Cardiovascular Aging. FRONTIERS IN AGING 2021; 2:725884. [PMID: 35822017 PMCID: PMC9261391 DOI: 10.3389/fragi.2021.725884] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD) is still the leading cause of illness and death in the Western world. Cardiovascular aging is a progressive modification occurring in cardiac and vascular morphology and physiology where increased endothelial dysfunction and arterial stiffness are observed, generally accompanied by increased systolic blood pressure and augmented pulse pressure. The effects of biological sex on cardiovascular pathophysiology have long been known. The incidence of hypertension is higher in men, and it increases in postmenopausal women. Premenopausal women are protected from CVD compared with age-matched men and this protective effect is lost with menopause, suggesting that sex-hormones influence blood pressure regulation. In parallel, the heart progressively remodels over the course of life and the pattern of cardiac remodeling also differs between the sexes. Lower autonomic tone, reduced baroreceptor response, and greater vascular function are observed in premenopausal women than men of similar age. However, postmenopausal women have stiffer arteries than their male counterparts. The biological mechanisms responsible for sex-related differences observed in cardiovascular aging are being unraveled over the last several decades. This review focuses on molecular mechanisms underlying the sex-differences of CVD in aging.
Collapse
Affiliation(s)
- Vanessa Dela Justina
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Fernanda Priviero
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| | - Jennifer C. Sullivan
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Fernanda R. Giachini
- Graduate Program in Biological Sciences, Federal University of Goiás, Goiânia, Brazil
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - R. Clinton Webb
- Cardiovascular Translational Research Center, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
9
|
Francois A, Canella A, Marcho LM, Stratton MS. Protein acetylation in cardiac aging. J Mol Cell Cardiol 2021; 157:90-97. [PMID: 33915138 DOI: 10.1016/j.yjmcc.2021.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 03/14/2021] [Accepted: 04/21/2021] [Indexed: 11/15/2022]
Abstract
Biological aging is attributed to progressive dysfunction in systems governing genetic and metabolic integrity. At the cellular level, aging is evident by accumulated DNA damage and mutation, reactive oxygen species, alternate lipid and protein modifications, alternate gene expression programs, and mitochondrial dysfunction. These effects sum to drive altered tissue morphology and organ dysfunction. Protein-acylation has emerged as a critical mediator of age-dependent changes in these processes. Despite decades of research focus from academia and industry, heart failure remains a leading cause of death in the United States while the 5 year mortality rate for heart failure remains over 40%. Over 90% of heart failure deaths occur in patients over the age of 65 and heart failure is the leading cause of hospitalization in Medicare beneficiaries. In 1931, Cole and Koch discovered age-dependent accumulation of phosphates in skeletal muscle. These and similar findings provided supporting evidence for, now well accepted, theories linking metabolism and aging. Nearly two decades later, age-associated alterations in biochemical molecules were described in the heart. From these small beginnings, the field has grown substantially in recent years. This growing research focus on cardiac aging has, in part, been driven by advances on multiple public health fronts that allow population level clinical presentation of aging related disorders. It is estimated that by 2030, 25% of the worldwide population will be over the age of 65. This review provides an overview of acetylation-dependent regulation of biological processes related to cardiac aging and introduces emerging non-acetyl, acyl-lysine modifications in cardiac function and aging.
Collapse
Affiliation(s)
- Ashley Francois
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Alessandro Canella
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Lynn M Marcho
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Matthew S Stratton
- Department of Physiology and Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
10
|
Romero G, Salama G. Relaxin abrogates genomic remodeling of the aged heart. VITAMINS AND HORMONES 2021; 115:419-448. [PMID: 33706957 DOI: 10.1016/bs.vh.2020.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
"Healthy" aging drives structural and functional changes in the heart including maladaptive electrical remodeling, fibrosis and inflammation, which lower the threshold for cardiovascular diseases such as heart failure (HF) and atrial fibrillation (AF). Despite mixed results in clinical trials, Relaxin-therapy for 2-days reduced mortality by 37% at 180-days post-treatment, in patients with acute decompensated HF. Relaxin's short lifespan (2-3h) but long-lasting protective actions suggested that relaxin acts at a genomic level to reverse maladaptive remodeling in AF, HF and aging. Our recent studies showed that a 2-week treatment with Relaxin (0.4mg/kg/day) of aged (24months old F-344 rats) increases the expression of voltage-gated Na+ channels (mRNA, Nav1.5 and INa), connexin-43, abrogates inflammatory and immune responses and reverses myocardial fibrosis and cellular hypertrophy of the aged hearts. Relaxin acts directly at a wide range of cell types in the cardiovascular system that express its cognate GPCR receptor, RXFP1. RNA-seq analysis of young and aged hearts with and without Relaxin treatment revealed that "normal" aging altered the expression of ~10% of genes expressed in the ventricles, including: ion channels, components of fibrosis, hemodynamic biomarkers, immune and inflammatory responses which were reversed by Relaxin. The extensive cardiovascular remodeling caused by Relaxin was mediated through the activation of the Wnt/β-catenin signaling pathway which was otherwise suppressed by in adult cardiomyocytes intracellular by cytosolic Dickkopf1 (Dkk1). Wnt/β-catenin signaling is a mechanism that can explain the pleiotropic actions of Relaxin and the marked reversal of genomic changes that occur in aged hearts.
Collapse
Affiliation(s)
- Guillermo Romero
- Department of Pharmacology & Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Guy Salama
- Department of Medicine, Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
11
|
Garate-Carrillo A, Gonzalez J, Ceballos G, Ramirez-Sanchez I, Villarreal F. Sex related differences in the pathogenesis of organ fibrosis. Transl Res 2020; 222:41-55. [PMID: 32289256 PMCID: PMC7721117 DOI: 10.1016/j.trsl.2020.03.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 12/11/2022]
Abstract
The development of organ fibrosis has garnered rising attention as multiple diseases of increasing and/or high prevalence appear to progress to the chronic stage. Such is the case for heart, kidney, liver, and lung where diseases such as diabetes, idiopathic/autoimmune disorders, and nonalcoholic liver disease appear to notably drive the development of fibrosis. Noteworthy is that the severity of these pathologies is characteristically compounded by aging. For these reasons, research groups and drug companies have identified fibrosis as a therapeutic target for which currently, there are essentially no effective options. Although a limited body of published studies are available, most literature indicates that in multiple organs, premenopausal women are protected from developing severe forms of fibrosis suggesting an important role for sex hormones in mitigating this process. Investigators have implemented relevant animal models of organ disease linked to fibrosis supporting in general, these observations. In vitro studies and transgenic animals models have also been used in an attempt to understand the role that sex hormones and related receptors play in the development of fibrosis. However, in the setting of chronic disease in some organs such as the heart older (postmenopausal) women within a few years can quickly approach men in disease severity and develop significant degrees of fibrosis. This review summarizes the current body of relevant literature and highlights the imperative need for a major focus to be placed on understanding the manner in which sex and the presence or absence of related hormones modulates cell phenotypes so as to allow for fibrosis to develop.
Collapse
Affiliation(s)
- Alejandra Garate-Carrillo
- Department of Medicine, School of Medicine, University of California, San Diego, California; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico city, Mexico
| | - Julisa Gonzalez
- Department of Medicine, School of Medicine, University of California, San Diego, California
| | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico city, Mexico
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, California; Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico city, Mexico
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California, San Diego, California; VA San Diego Health Care, San Diego, California.
| |
Collapse
|
12
|
Dynamic UTR Usage Regulates Alternative Translation to Modulate Gap Junction Formation during Stress and Aging. Cell Rep 2020; 27:2737-2747.e5. [PMID: 31141695 PMCID: PMC6857847 DOI: 10.1016/j.celrep.2019.04.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 03/20/2019] [Accepted: 04/29/2019] [Indexed: 11/22/2022] Open
Abstract
Connexin43 (Cx43; gene name GJA1) is the most ubiquitously expressed gap junction protein, and understanding of its regulation largely falls under transcription and post-translational modification. In addition to Cx43, Gja1 mRNA encodes internally translated isoforms regulating gap junction formation, whose expression is modulated by TGF-β. Here, using RLM-RACE, we identify distinct Gja1 transcripts differing only in 5′ UTR length, of which two are upregulated during TGF-β exposure and hypoxia. Introduction of these transcripts into Gja1−/− cells phenocopies the response of Gja1 to TGF-β with reduced internal translation initiation. Inhibiting pathways downstream of TGF-β selectively regulates levels of Gja1 transcript isoforms and translation products. Reporter assays reveal enhanced translation of full-length Cx43 from shorter Gja1 5′ UTR isoforms. We also observe a correlation among UTR selection, translation, and reduced gap junction formation in aged heart tissue. These data elucidate a relationship between transcript isoform expression and translation initiation regulating intercellular communication. Connexin43 gap junctions enable direct intercellular communication facilitating action potential propagation. Internal translation of connexin43 mRNA generates the truncated isoform GJA1–20k, which promotes gap junction formation. During aging, Zeitz et al. find that activation of stress-response pathways shortens connexin43 mRNA UTRs to limit GJA1–20k translation coincident with gap junction loss.
Collapse
|
13
|
Loredo-Mendoza ML, Ramirez-Sanchez I, Bustamante-Pozo MM, Ayala M, Navarrete V, Garate-Carrillo A, Ito BR, Ceballos G, Omens J, Villarreal F. The role of inflammation in driving left ventricular remodeling in a pre-HFpEF model. Exp Biol Med (Maywood) 2020; 245:748-757. [PMID: 32183553 DOI: 10.1177/1535370220912699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
IMPACT STATEMENT The incidence of HFpEF continues to increase and ∼2/3 of the patient population are post-menopausal women. Unfortunately, most studies focus on the use of male animal models of remodeling. In this study, however, using female rats to set a model of pre-HFpEF, we provide insights to possible mechanisms that contribute to HFpEF development in humans that will lead us to a better understanding of the underlying pathophysiology of HFpEF.
Collapse
Affiliation(s)
- Maria L Loredo-Mendoza
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico 07738, Mexico
- Department of Histopathology, School of Medicine, Universidad Panamericana, Ciudad de Mexico 03920, Mexico
| | - Israel Ramirez-Sanchez
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico 07738, Mexico
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92093-0021, USA
| | - Moises Muratt Bustamante-Pozo
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico 07738, Mexico
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92093-0021, USA
| | - Marcos Ayala
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico 07738, Mexico
| | - Viridiana Navarrete
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico 07738, Mexico
| | - Alejandra Garate-Carrillo
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico 07738, Mexico
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92093-0021, USA
| | - Bruce R Ito
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92093-0021, USA
| | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico 07738, Mexico
| | - Jeffrey Omens
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92093-0021, USA
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California, San Diego, CA 92093-0021, USA
- VA San Diego Healthcare, San Diego, CA 92161, USA
| |
Collapse
|
14
|
El-Baz FK, Hussein RA, Saleh DO, Abdel Jaleel GAR. Zeaxanthin Isolated from Dunaliella salina Microalgae Ameliorates Age Associated Cardiac Dysfunction in Rats through Stimulation of Retinoid Receptors. Mar Drugs 2019; 17:md17050290. [PMID: 31091726 PMCID: PMC6562725 DOI: 10.3390/md17050290] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 04/30/2019] [Accepted: 05/04/2019] [Indexed: 12/11/2022] Open
Abstract
Retinoids are essential during early cardiovascular morphogenesis. However, recent studies showed their important role in cardiac remodeling in rats with hypertension and following myocardial infarction. The present study aimed to investigate the effect of zeaxanthin heneicosylate (ZH); a carotenoid ester isolated from Dunaliella salina microalgae, on cardiac dysfunction ensuing d-galactose injection in rats. Rats injected with d-GAL (200 mg/kg; I.P) for 8 weeks were orally treated with ZH (250 μg/kg) for 28 consecutive days. Results showed that d-GAL injection caused dramatic electrocardiographic changes as well as marked elevation in serum levels of homocysteine, creatinine kinase isoenzyme and lactate dehydrogenase. A reduction in the cardiac contents of glucose transporter-4 and superoxide dismutase along with the elevation of inducible nitric oxide synthetase and interleukin-6 was also noticed. Oral administration of ZH significantly improved the above mentioned cardiac aging manifestations; this was further emphasized through histopathological examinations. The effect of ZH is mediated through the interaction with retinoid receptor alpha (RAR-α) as evidenced through a significant elevation of RAR-α expression in cardiac tissue following the lead of an in silico molecular docking study. In conclusion, zeaxanthin heneicosylate isolated from D. salina ameliorated age-associated cardiac dysfunction in rats through the activation of retinoid receptors.
Collapse
Affiliation(s)
- Farouk Kamel El-Baz
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El Tahrir St.), Dokki, Giza P.O.12622, Egypt.
| | - Rehab Ali Hussein
- Pharmacognosy Department, National Research Centre (NRC), 33 El Buhouth St. (Former El Tahrir St.), Dokki, Giza P.O.12622, Egypt.
| | - Dalia Osama Saleh
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El Tahrir St.), Dokki, Giza P.O.12622, Egypt.
| | - Gehad Abdel Raheem Abdel Jaleel
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El Tahrir St.), Dokki, Giza P.O.12622, Egypt.
| |
Collapse
|
15
|
Bustamante M, Garate-Carrillo A, R Ito B, Garcia R, Carson N, Ceballos G, Ramirez-Sanchez I, Omens J, Villarreal F. Unmasking of oestrogen-dependent changes in left ventricular structure and function in aged female rats: a potential model for pre-heart failure with preserved ejection fraction. J Physiol 2019; 597:1805-1817. [PMID: 30681142 DOI: 10.1113/jp277479] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 01/24/2019] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS Heart failure with preserved ejection fraction (HFpEF) is seen more frequently in older women; risk factors include age, hypertension and excess weight. No female animal models of early stage remodelling (pre-HFpEF) have examined the effects that the convergence of such factors have on cardiac structure and function. In this study, we demonstrate that ageing can lead to the development of mild chamber remodelling, diffuse fibrosis and loss of diastolic function. The loss of oestrogens further aggravates such changes by leading to a notable drop in cardiac output (while preserving normal ejection fraction) in the presence of diffuse fibrosis that is more predominant in endocardium and is accompanied by papillary fibrosis. Excess weight did not markedly aggravate such findings. This animal model recapitulates many of the features recognized in older, female HFpEF patients and thus, may serve to examine the effects of candidate therapeutic agents. ABSTRACT Two-thirds of patients with heart failure with preserved ejection fraction (HFpEF) are older women, and risk factors include hypertension and excess weight/obesity. Pathophysiological factors that drive early disease development (before heart failure ensues) remain obscure and female animal models are lacking. The study evaluated the intersecting roles of ageing, oestrogen depletion and excess weight on altering cardiac structure/function. Female, 18-month-old, Fischer F344 rats were divided into an aged group, aged + ovariectomy (OVX) and aged + ovariectomy + 10% fructose (OVF) in drinking water (n = 8-16/group) to induce weight gain. Left ventricular (LV) structure/function was monitored by echocardiography. At 22 months of age, animals were anaesthetized and catheter-based haemodynamics evaluated, followed by histological measures of chamber morphometry and collagen density. All aged animals developed hypertension. OVF animals increased body weight. Echocardiography only detected mild chamber remodelling with ageing while intraventricular pressure-volume loop analysis showed significant (P < 0.05) decreases vs. ageing in stroke volume (13% OVX and 15% for OVF), stroke work (34% and 52%) and cardiac output (29% and 27%), and increases in relaxation time (10% OVX) with preserved ejection fraction. Histology indicated papillary and interstitial fibrosis with ageing, which was higher in the endocardium of OVX and OVF groups. With ageing, ovariectomy leads to the loss of diastolic and global LV function while preserving ejection fraction. This model recapitulates many cardiovascular features present in HFpEF patients and may help understand the roles that ageing and oestrogen depletion play in early (pre-HFpEF) disease development.
Collapse
Affiliation(s)
- Moises Bustamante
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico, DF
| | - Alejandra Garate-Carrillo
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico, DF
| | - Bruce R Ito
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Ricardo Garcia
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Bristol-Myers Squibb, New York, NY, USA
| | | | - Guillermo Ceballos
- Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico, DF
| | - Israel Ramirez-Sanchez
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,Seccion de Estudios de Posgrado e Investigacion, Escuela Superior de Medicina, Instituto Politecnico Nacional, Mexico, DF
| | - Jeffrey Omens
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Francisco Villarreal
- Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, USA.,VA San Diego Health Care, San Diego, CA, USA
| |
Collapse
|
16
|
Funahashi S, Okazaki Y, Nagai H, Chew SH, Ogawa K, Toyoda T, Cho YM, Toyokuni S. Twist1 was detected in mesenchymal cells of mammary fibroadenoma and invasive components of breast carcinoma in rats. J Toxicol Pathol 2018; 32:19-26. [PMID: 30739992 PMCID: PMC6361665 DOI: 10.1293/tox.2018-0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/03/2018] [Indexed: 12/28/2022] Open
Abstract
Fibroadenoma (FA) is a common mammary fibroepithelial tumor. The tumor size of the FA is
increased by estrogen, progesterone, prolactin, and pregnancy, whereas it decreases after
menopause. These observations in humans indicate that FA is hormone dependent. In rats,
the most common mammary neoplasm is also FA. Expression levels of Twist1, a
transcriptional regulator of epithelial-mesenchymal transition, were examined in
paraffin-embedded tissue sections of an experimental rat breast model to find
physiological alternations coincident with reproductive hormonal changes. Twenty-three
Fischer 344/Brown Norway F1 hybrid rats were used as 14‐ to 16-week-old adolescent rats
(n=3), pregnant rats (n=4), and lactating rats (n=6) in addition to rats over
100-weeks-old that exhibited aging (n=3) and FA (n=7). Seventy-six cases of chemically
induced breast carcinoma and two cases of FA in Sprague Dawley rats were also examined.
Using tissue sections, we observed that Twist1-positive mesenchymal cells were
predominantly located in the periductal region in adolescent and pregnant rats and in the
terminal duct lobular unit in pregnant and elderly rats. Twist1 was also expressed
diffusely in the mesenchymal cells of FA rats. Twist1-positive cancer-associated
mesenchymal cells were found more frequently in the invasive components of breast
carcinomas than in intraductal components. The expressions of Twist1 in mesenchymal cells
were induced by physiological and pathological stimuli, suggesting the biological role of
Twist1 in tissue structure. Further study may reveal the role of Twist1 in mesenchymal
cells of mammary glands in rats.
Collapse
Affiliation(s)
- Satomi Funahashi
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Yasumasa Okazaki
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Hirotaka Nagai
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Shan Hwu Chew
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Young-Man Cho
- Division of Pathology, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki-ku, Kawasaki, Kanagawa 210-9501, Japan
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi 466-8550, Japan
| |
Collapse
|
17
|
Kane AE, Howlett SE. Differences in Cardiovascular Aging in Men and Women. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1065:389-411. [PMID: 30051398 DOI: 10.1007/978-3-319-77932-4_25] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiovascular diseases increase dramatically with age in both men and women. While it is clear that advanced age allows more time for individuals to be exposed to risk factors in general, there is strong evidence that age itself is a major independent risk factor for cardiovascular disease. Indeed, there are distinct age-dependent cellular, structural, and functional changes in both the heart and blood vessels, even in individuals with no clinical evidence of cardiovascular disease. Studies in older humans and in animal models of aging indicate that this age-related remodeling is maladaptive. An emerging view is that the heart and blood vessels accumulate cellular and subcellular deficits with age and these deficits increase susceptibility to disease in older individuals. Aspects of this age-dependent remodeling of the heart and blood vessels differ between the sexes. There is also new evidence that these maladaptive changes are more prominent in older animals and humans with a high degree of frailty. These observations may help explain why men and women are susceptible to different cardiovascular diseases as they age and why frail older adults are most often affected by these diseases.
Collapse
Affiliation(s)
- Alice E Kane
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada
| | - Susan E Howlett
- Department of Pharmacology, Dalhousie University, Halifax, NS, Canada.
- Department of Medicine (Geriatric Medicine), Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
18
|
Leybaert L, Lampe PD, Dhein S, Kwak BR, Ferdinandy P, Beyer EC, Laird DW, Naus CC, Green CR, Schulz R. Connexins in Cardiovascular and Neurovascular Health and Disease: Pharmacological Implications. Pharmacol Rev 2017; 69:396-478. [PMID: 28931622 PMCID: PMC5612248 DOI: 10.1124/pr.115.012062] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Connexins are ubiquitous channel forming proteins that assemble as plasma membrane hemichannels and as intercellular gap junction channels that directly connect cells. In the heart, gap junction channels electrically connect myocytes and specialized conductive tissues to coordinate the atrial and ventricular contraction/relaxation cycles and pump function. In blood vessels, these channels facilitate long-distance endothelial cell communication, synchronize smooth muscle cell contraction, and support endothelial-smooth muscle cell communication. In the central nervous system they form cellular syncytia and coordinate neural function. Gap junction channels are normally open and hemichannels are normally closed, but pathologic conditions may restrict gap junction communication and promote hemichannel opening, thereby disturbing a delicate cellular communication balance. Until recently, most connexin-targeting agents exhibited little specificity and several off-target effects. Recent work with peptide-based approaches has demonstrated improved specificity and opened avenues for a more rational approach toward independently modulating the function of gap junctions and hemichannels. We here review the role of connexins and their channels in cardiovascular and neurovascular health and disease, focusing on crucial regulatory aspects and identification of potential targets to modify their function. We conclude that peptide-based investigations have raised several new opportunities for interfering with connexins and their channels that may soon allow preservation of gap junction communication, inhibition of hemichannel opening, and mitigation of inflammatory signaling.
Collapse
Affiliation(s)
- Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Paul D Lampe
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Stefan Dhein
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Brenda R Kwak
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Peter Ferdinandy
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Eric C Beyer
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Dale W Laird
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Christian C Naus
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Colin R Green
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| | - Rainer Schulz
- Physiology Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium (L.L.); Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, Washington (P.D.L.); Institute for Pharmacology, University of Leipzig, Leipzig, Germany (S.D.); Department of Pathology and Immunology, Department of Medical Specialization-Cardiology, University of Geneva, Geneva, Switzerland (B.R.K.); Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary (P.F.); Pharmahungary Group, Szeged, Hungary (P.F.); Department of Pediatrics, University of Chicago, Chicago, Illinois (E.C.B.); Department of Anatomy and Cell Biology, University of Western Ontario, Dental Science Building, London, Ontario, Canada (D.W.L.); Cellular and Physiological Sciences, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada (C.C.N.); Department of Ophthalmology and The New Zealand National Eye Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand (C.R.G.); and Physiologisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany (R.S.)
| |
Collapse
|
19
|
Connexin 43 and Mitochondria in Cardiovascular Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 982:227-246. [PMID: 28551790 DOI: 10.1007/978-3-319-55330-6_12] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Connexin 43 (Cx43) is the major connexin protein in ventricular cardiomyocytes. Six Cx43 proteins assemble into so-called hemichannels at the sarcolemma and opposing hemichannels form gap junctions, which allow the passage of small molecules and electrical current flow between adjacent cells. Apart from its localization at the plasma membrane, Cx43 is also present in cardiomyocyte mitochondria, where it is important for mitochondrial function in terms of oxygen consumption and potassium fluxes. The expression of gap junctional and mitochondrial Cx43 is altered under several pathophysiological conditions among them are hypertension, hypertrophy, hypercholesterolemia, ischemia/reperfusion injury, post-infarction remodeling, and heart failure. The present review will focus on the role of Cx43 in cardiovascular diseases and will highlight the importance of mitochondrial Cx43 in cardioprotection.
Collapse
|
20
|
Sex Differences in the Biology and Pathology of the Aging Heart. Can J Cardiol 2016; 32:1065-73. [DOI: 10.1016/j.cjca.2016.03.017] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/30/2016] [Accepted: 03/30/2016] [Indexed: 01/30/2023] Open
|
21
|
Alencar AK, da Silva JS, Lin M, Silva AM, Sun X, Ferrario CM, Cheng C, Sudo RT, Zapata-Sudo G, Wang H, Groban L. Effect of Age, Estrogen Status, and Late-Life GPER Activation on Cardiac Structure and Function in the Fischer344×Brown Norway Female Rat. J Gerontol A Biol Sci Med Sci 2016; 72:152-162. [PMID: 27006078 DOI: 10.1093/gerona/glw045] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/25/2016] [Indexed: 01/08/2023] Open
Abstract
Age-associated changes in cardiac structure and function, together with estrogen loss, contribute to the progression of heart failure with preserved ejection fraction in older women. To investigate the effects of aging and estrogen loss on the development of its precursor, asymptomatic left ventricular diastolic dysfunction, echocardiograms were performed in 10 middle-aged (20 months) and 30 old-aged (30 months) female Fischer344×Brown-Norway rats, 4 and 8 weeks after ovariectomy (OVX) and sham procedures (gonads left intact). The cardioprotective potential of administering chronic G1, the selective agonist to the new G-protein-coupled estrogen receptor (GPER), was further evaluated in old rats (Old-OVX+G1) versus age-matched, vehicle-treated OVX and gonadal intact rats. Advanced age and estrogen loss led to decreases in myocardial relaxation and elevations in filling pressure, in part, due to reductions in phosphorylated phospholamban and increases in cardiac collagen deposition. Eight weeks of G-protein-coupled estrogen receptor activation in Old-OVX+G1 rats reversed the adverse effects of age and estrogen loss on myocardial relaxation through increases in sarcoplasmic reticulum Ca2+ ATPase expression and reductions in interstitial fibrosis. These findings may explain the preponderance of heart failure with preserved ejection fraction in older postmenopausal women and provide a promising, late-life therapeutic target to reverse or halt the progression of left ventricular diastolic dysfunction.
Collapse
Affiliation(s)
- Allan K Alencar
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jaqueline S da Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marina Lin
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Ananssa M Silva
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Carlos M Ferrario
- Department of Internal Medicine, Section on Nephrology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Surgery, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Cheping Cheng
- Department of Internal Medicine, Section on Cardiovascular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Roberto T Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gisele Zapata-Sudo
- Programa de Pesquisa em Desenvolvimento de Fármacos, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina.,Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston-Salem, North Carolina. .,Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina.,The Hypertension and Vascular Research Center, Wake Forest School of Medicine, Winston-Salem, North Carolina.,The Sticht Center on Aging, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
22
|
Schulz R, Görge PM, Görbe A, Ferdinandy P, Lampe PD, Leybaert L. Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacol Ther 2015; 153:90-106. [PMID: 26073311 DOI: 10.1016/j.pharmthera.2015.06.005] [Citation(s) in RCA: 180] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/29/2015] [Indexed: 12/22/2022]
Abstract
Connexins are widely distributed proteins in the body that are crucially important for heart and brain functions. Six connexin subunits form a connexon or hemichannel in the plasma membrane. Interactions between two hemichannels in a head-to-head arrangement result in the formation of a gap junction channel. Gap junctions are necessary to coordinate cell function by passing electrical current flow between heart and nerve cells or by allowing exchange of chemical signals and energy substrates. Apart from its localization at the sarcolemma of cardiomyocytes and brain cells, connexins are also found in the mitochondria where they are involved in the regulation of mitochondrial matrix ion fluxes and respiration. Connexin expression is affected by age and gender as well as several pathophysiological alterations such as hypertension, hypertrophy, diabetes, hypercholesterolemia, ischemia, post-myocardial infarction remodeling or heart failure, and post-translationally connexins are modified by phosphorylation/de-phosphorylation and nitros(yl)ation which can modulate channel activity. Using knockout/knockin technology as well as pharmacological approaches, one of the connexins, namely connexin 43, has been identified to be important for cardiac and brain ischemia/reperfusion injuries as well as protection from it. Therefore, the current review will focus on the importance of connexin 43 for irreversible injury of heart and brain tissues following ischemia/reperfusion and will highlight the importance of connexin 43 as an emerging therapeutic target in cardio- and neuroprotection.
Collapse
Affiliation(s)
- Rainer Schulz
- Institut für Physiologie, JustusLiebig Universität Giessen, Gießen, Germany.
| | | | - Anikó Görbe
- Cardiovascular Research Group, Department of Biochemistry, Faculty of Medicine, University of Szeged, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary; Pharmahungary Group, Szeged, Hungary
| | - Paul D Lampe
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Luc Leybaert
- Physiology Group, Department Basic Medical Sciences, Ghent University, Belgium
| |
Collapse
|
23
|
The changes in cardiac physiology with aging and the implications for the treating oncologist. J Geriatr Oncol 2015; 6:178-84. [PMID: 25758027 DOI: 10.1016/j.jgo.2015.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/16/2015] [Accepted: 02/19/2015] [Indexed: 12/27/2022]
Abstract
The link between cancer, cardiovascular disease, and aging is well documented. In this review, we highlight the physiologic and pathologic changes associated with the cardiovascular aging process, the role they play when interfaced with various cancer therapies and the implications for the treating oncologist.
Collapse
|
24
|
Efficacy of female rat models in translational cardiovascular aging research. J Aging Res 2014; 2014:153127. [PMID: 25610649 PMCID: PMC4294461 DOI: 10.1155/2014/153127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in women in the United States. Aging is a primary risk factor for the development of cardiovascular disease as well as cardiovascular-related morbidity and mortality. Aging is a universal process that all humans undergo; however, research in aging is limited by cost and time constraints. Therefore, most research in aging has been done in primates and rodents; however it is unknown how well the effects of aging in rat models translate into humans. To compound the complication of aging gender has also been indicated as a risk factor for various cardiovascular diseases. This review addresses the systemic pathophysiology of the cardiovascular system associated with aging and gender for aging research with regard to the applicability of rat derived data for translational application to human aging.
Collapse
|