1
|
Don J, Schork AJ, Glusman G, Rappaport N, Cummings SR, Duggan D, Raju A, Hellberg KLG, Gunn S, Monti S, Perls T, Lapidus J, Goetz LH, Sebastiani P, Schork NJ. The relationship between 11 different polygenic longevity scores, parental lifespan, and disease diagnosis in the UK Biobank. GeroScience 2024; 46:3911-3927. [PMID: 38451433 PMCID: PMC11226417 DOI: 10.1007/s11357-024-01107-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/21/2024] [Indexed: 03/08/2024] Open
Abstract
Large-scale genome-wide association studies (GWAS) strongly suggest that most traits and diseases have a polygenic component. This observation has motivated the development of disease-specific "polygenic scores (PGS)" that are weighted sums of the effects of disease-associated variants identified from GWAS that correlate with an individual's likelihood of expressing a specific phenotype. Although most GWAS have been pursued on disease traits, leading to the creation of refined "Polygenic Risk Scores" (PRS) that quantify risk to diseases, many GWAS have also been pursued on extreme human longevity, general fitness, health span, and other health-positive traits. These GWAS have discovered many genetic variants seemingly protective from disease and are often different from disease-associated variants (i.e., they are not just alternative alleles at disease-associated loci) and suggest that many health-positive traits also have a polygenic basis. This observation has led to an interest in "polygenic longevity scores (PLS)" that quantify the "risk" or genetic predisposition of an individual towards health. We derived 11 different PLS from 4 different available GWAS on lifespan and then investigated the properties of these PLS using data from the UK Biobank (UKB). Tests of association between the PLS and population structure, parental lifespan, and several cancerous and non-cancerous diseases, including death from COVID-19, were performed. Based on the results of our analyses, we argue that PLS are made up of variants not only robustly associated with parental lifespan, but that also contribute to the genetic architecture of disease susceptibility, morbidity, and mortality.
Collapse
Affiliation(s)
- Janith Don
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Andrew J Schork
- The Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
- GLOBE Institute, Copenhagen University, Copenhagen, Denmark
| | | | | | - Steve R Cummings
- San Francisco Coordinating Center, California Pacific Medical Center Research Institute, San Francisco, CA, USA
| | - David Duggan
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Anish Raju
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
| | - Kajsa-Lotta Georgii Hellberg
- The Institute of Biological Psychiatry, Copenhagen University Hospital, Copenhagen, Denmark
- GLOBE Institute, Copenhagen University, Copenhagen, Denmark
| | - Sophia Gunn
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Stefano Monti
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Thomas Perls
- Department of Medicine, Section of Geriatrics, Boston University, Boston, MA, USA
| | - Jodi Lapidus
- Department of Biostatistics, Oregon Health & Science University, Portland, OR, USA
| | - Laura H Goetz
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA
- Veterans Affairs Loma Linda Health Care, Loma Linda, CA, USA
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Institute for Clinical Research and Health Policy Studies, Tufts Medical Center, Boston, MA, USA
- Tufts University School of Medicine and Data Intensive Study Center, Boston, MA, USA
| | - Nicholas J Schork
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.
- The City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
2
|
Amente LD, Mills NT, Le TD, Hyppönen E, Lee SH. Unraveling phenotypic variance in metabolic syndrome through multi-omics. Hum Genet 2024; 143:35-47. [PMID: 38095720 DOI: 10.1007/s00439-023-02619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/18/2023] [Indexed: 01/19/2024]
Abstract
Complex multi-omics effects drive the clustering of cardiometabolic risk factors, underscoring the imperative to comprehend how individual and combined omics shape phenotypic variation. Our study partitions phenotypic variance in metabolic syndrome (MetS), blood glucose (GLU), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and blood pressure through genome, transcriptome, metabolome, and exposome (i.e., lifestyle exposome) analyses. Our analysis included a cohort of 62,822 unrelated individuals with white British ancestry, sourced from the UK biobank. We employed linear mixed models to partition phenotypic variance using the restricted maximum likelihood (REML) method, implemented in MTG2 (v2.22). We initiated the analysis by individually modeling omics, followed by subsequent integration of pairwise omics in a joint model that also accounted for the covariance and interaction between omics layers. Finally, we estimated the correlations of various omics effects between the phenotypes using bivariate REML. Significant proportions of the MetS variance were attributed to distinct data sources: genome (9.47%), transcriptome (4.24%), metabolome (14.34%), and exposome (3.77%). The phenotypic variances explained by the genome, transcriptome, metabolome, and exposome ranged from 3.28% for GLU to 25.35% for HDL-C, 0% for GLU to 19.34% for HDL-C, 4.29% for systolic blood pressure (SBP) to 35.75% for TG, and 0.89% for GLU to 10.17% for HDL-C, respectively. Significant correlations were found between genomic and transcriptomic effects for TG and HDL-C. Furthermore, significant interaction effects between omics data were detected for both MetS and its components. Interestingly, significant correlation of omics effect between the phenotypes was found. This study underscores omics' roles, interaction effects, and random-effects covariance in unveiling phenotypic variation in multi-omics domains.
Collapse
Affiliation(s)
- Lamessa Dube Amente
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia.
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| | - Natalie T Mills
- Discipline of Psychiatry, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Thuc Duy Le
- UniSA STEM, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Elina Hyppönen
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia
- UniSA Clinical and Health Sciences, University of South Australia, Adelaide, SA, 5000, Australia
| | - S Hong Lee
- Australian Centre for Precision Health, University of South Australia, Adelaide, SA, 5000, Australia.
- UniSA Allied Health and Human Performance, University of South Australia, Adelaide, SA, 5000, Australia.
- South Australian Health and Medical Research Institute, Adelaide, SA, 5000, Australia.
| |
Collapse
|
3
|
Bafei SEC, Shen C. Biomarkers selection and mathematical modeling in biological age estimation. NPJ AGING 2023; 9:13. [PMID: 37393295 DOI: 10.1038/s41514-023-00110-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 05/08/2023] [Indexed: 07/03/2023]
Abstract
Biological age (BA) is important for clinical monitoring and preventing aging-related disorders and disabilities. Clinical and/or cellular biomarkers are measured and integrated in years using mathematical models to display an individual's BA. To date, there is not yet a single or set of biomarker(s) and technique(s) that is validated as providing the BA that reflects the best real aging status of individuals. Herein, a comprehensive overview of aging biomarkers is provided and the potential of genetic variations as proxy indicators of the aging state is highlighted. A comprehensive overview of BA estimation methods is also provided as well as a discussion of their performances, advantages, limitations, and potential approaches to overcome these limitations.
Collapse
Affiliation(s)
- Solim Essomandan Clémence Bafei
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Chong Shen
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
4
|
Aksoy S, Öz D, Öz M, Agirbasli M. Predictors of Long-Term Mortality in Patients with Stable Angina Pectoris and Coronary Slow Flow. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040763. [PMID: 37109721 PMCID: PMC10144203 DOI: 10.3390/medicina59040763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023]
Abstract
Background and Objectives: Coronary slow flow (CSF) is an angiographic phenomenon characterized by the slow progression of an injected contrast agent during diagnostic coronary angiography in the absence of significant stenosis. Although CSF is a common angiographic finding, the long-term outcomes and mortality rates are still unknown. This study aimed to investigate the underlying causes of mortality over a 10-year period in patients diagnosed with stable angina pectoris (SAP) and CSF. Materials and Methods: This study included patients with SAP who underwent coronary angiography from 1 January 2012 to 31 December 2012. All patients displayed CSF despite having angiographically normal coronary arteries. Hypertension (HT), diabetes mellitus (DM), hyperlipidaemia, medication compliance, comorbidities, and laboratory data were recorded at the time of angiography. Thrombolysis in myocardial infarction (TIMI) frame count (TFC) was calculated for each patient. The cardiovascular (CV) and non-CV causes of long-term mortality were assessed. Results: A total of 137 patients with CSF (93 males; mean age: 52.2 ± 9.36 years) were included in this study. Twenty-one patients (15.3%) died within 10 years of follow-up. Nine (7.2%) and 12 (9.4%) patients died of non-CV and CV causes, respectively. Total mortality in patients with CSF was associated with age, HT, discontinuation of medications, and high-density lipoprotein cholesterol (HDL-C) levels. The mean TFC was associated with CV mortality. Conclusion: Patients with CSF exhibited a notable increase in cardiovascular-related and overall mortality rates after 10 years of follow-up. HT, discontinuation of medications, HDL-C levels, and mean TFC were associated with mortality in patients with CSF.
Collapse
Affiliation(s)
- Sukru Aksoy
- Department of Cardiology, Dr. Siyami Ersek Training and Research Hospital, University of Health Sciences, Istanbul 34668, Turkey
| | - Dilaver Öz
- Department of Cardiology, Dr. Siyami Ersek Training and Research Hospital, University of Health Sciences, Istanbul 34668, Turkey
| | - Melih Öz
- Department of Cardiology, Dr. Siyami Ersek Training and Research Hospital, University of Health Sciences, Istanbul 34668, Turkey
| | - Mehmet Agirbasli
- Department of Cardiology, Faculty of Medicine, Medeniyet University, Istanbul 34722, Turkey
| |
Collapse
|