1
|
Zaaba NE, Al-Salam S, Beegam S, Elzaki O, Aldhaheri F, Nemmar A, Ali BH, Nemmar A. Attenuation of cisplatin-induced acute kidney injury by sanguinarine: modulation of oxidative stress, inflammation, and cellular damage. Front Pharmacol 2025; 16:1567888. [PMID: 40242453 PMCID: PMC11999955 DOI: 10.3389/fphar.2025.1567888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Introduction Cisplatin (CP)-induced acute kidney injury (AKI) is a significant side effect of CP chemotherapy, driven by oxidative stress and inflammation. Sanguinarine (SANG), an alkaloid from the rhizomes of Sanguinaria canadensis and poppy-fumaria species, exhibits antioxidant and anti-inflammatory properties. This study examined SANG's effect on CP-induced AKI in mice and its underlying mechanisms. Methods Mice were orally administered 5 mg/kg SANG for 10 days. On the seventh day, they received a single intraperitoneal CP injection (20 mg/kg) and were sacrificed on the 11th day. Results SANG significantly improved CP-induced decreases in body weight, water intake, urine volume, relative kidney weight, creatinine clearance, albumin-to-creatinine ratio, and plasma urea and creatinine levels. It also reduced elevated plasma neutrophil gelatinase-associated lipocalin, kidney injury molecule-1, cystatin C, and adiponectin levels, as well as renal markers of inflammation and oxidative stress induced by CP administration. SANG normalized kidney mitochondrial dysfunction, DNA damage, and apoptosis caused by CP. It also inhibited the CP-induced increase in the expression of phosphorylated nuclear factor-κB and autophagy markers in the kidney. Histological analysis showed that SANG reduced acute tubular necrosis and intraluminal protein accumulation due to CP. Discussion In conclusion, SANG mitigated CP-induced AKI by reducing inflammation, oxidative stress, DNA damage, apoptosis, and autophagy. Pending more comprehensive pharmacological and toxicological assessments, SANG may be regarded as a potential therapeutic agent for mitigating CP-induced AKI.
Collapse
Affiliation(s)
- Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Fatima Aldhaheri
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Anas Nemmar
- College of Medicine, Gulf Medical University, Ajman, United Arab Emirates
| | - Badreldin H. Ali
- Emeritus Professor, Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Science, Sultan Qaboos University, Muscat, Oman
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
2
|
Pacyga K, Pacyga P, Topola E, Viscardi S, Duda-Madej A. Bioactive Compounds from Plant Origin as Natural Antimicrobial Agents for the Treatment of Wound Infections. Int J Mol Sci 2024; 25:2100. [PMID: 38396777 PMCID: PMC10889580 DOI: 10.3390/ijms25042100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
The rising prevalence of drug-resistant bacteria underscores the need to search for innovative and nature-based solutions. One of the approaches may be the use of plants that constitute a rich source of miscellaneous compounds with a wide range of biological properties. This review explores the antimicrobial activity of seven bioactives and their possible molecular mechanisms of action. Special attention was focused on the antibacterial properties of berberine, catechin, chelerythrine, cinnamaldehyde, ellagic acid, proanthocyanidin, and sanguinarine against Staphylococcus aureus, Enterococcus spp., Klebsiella pneumoniae, Acinetobacter baumannii, Escherichia coli, Serratia marcescens and Pseudomonas aeruginosa. The growing interest in novel therapeutic strategies based on new plant-derived formulations was confirmed by the growing number of articles. Natural products are one of the most promising and intensively examined agents to combat the consequences of the overuse and misuse of classical antibiotics.
Collapse
Affiliation(s)
- Katarzyna Pacyga
- Department of Environment Hygiene and Animal Welfare, Faculty of Biology and Animal Science, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Paweł Pacyga
- Department of Thermodynamics and Renewable Energy Sources, Faculty of Mechanical and Power Engineering, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (S.V.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
3
|
Ullah A, Ullah N, Nawaz T, Aziz T. Molecular Mechanisms of Sanguinarine in Cancer Prevention and Treatment. Anticancer Agents Med Chem 2023; 23:765-778. [PMID: 36045531 DOI: 10.2174/1871520622666220831124321] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022]
Abstract
Historically, natural plant-derived drugs received a great impact of consideration in the treatment of several human-associated disorders. Cancer is a devastating disease and the second most cause of mortality. Sanguinarine (SANG), a naturally isolated plant alkaloidal agent, possesses chemo-preventive effects. Several studies have revealed that SANG impedes tumor metastasis and development by disrupting a wide range of cell signaling pathways and its molecular targets, such as BCL-2, MAPKs, Akt, NF-κB, ROS, and microRNAs (miRNAs). However, its low chemical stability and poor oral bioavailability remain key issues in its use as a medicinal molecule. A novel method (e.g., liposomes, nanoparticles, and micelles) and alternative analogs provide an exciting approach to alleviate these problems and broaden its pharmacokinetic profile. Cancer-specific miRNA expression is synchronized by SANG, which has also been uncertain. In this critical study, we review the utilization of SANG mimics and nano-technologies to improve its support in cancer. We focus on recently disclosed studies on SANG anti-cancer properties.
Collapse
Affiliation(s)
- Asmat Ullah
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Najeeb Ullah
- School of Biochemistry and Molecular Biology, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P.R. China
| | - Touseef Nawaz
- Faculty of Pharmacy, Gomal University, D.I. Khan, Pakistan
| | - Tariq Aziz
- School of Engineering, Westlake University, Hangzhou, Zhejiang Province, 310024, China
| |
Collapse
|
4
|
Dong Z, Tang SS, Ma XL, Li CH, Tang ZS, Yang ZH, Zeng JG. Preclinical safety evaluation of Macleaya Cordata extract: A re-assessment of general toxicity and genotoxicity properties in rodents. Front Pharmacol 2022; 13:980918. [PMID: 36034805 PMCID: PMC9412730 DOI: 10.3389/fphar.2022.980918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Macleaya cordata extract (MCE) is widely used for its diverse pharmacological actions and beneficial effects on farm animals. Modern pharmacological studies have shown that it has anti-inflammatory, anti-cancer, and anti-bacterial activities, and is gradually becoming a long-term additive veterinary drug used to improve animal intestinal health and growth performance. Although some evidence points to the DNA mutagenic potential of sanguinarine (SAN), a major component of MCE, there is a lack of sufficient basic toxicological information on the oral route, posing a potential safety risk for human consumption of food of animal origin. In this study, we assessed the acute oral toxicity, repeated 90-day oral toxicity and 180-day chronic toxicity of MCE in rats and mice and re-evaluated the genotoxicity of MCE using a standard combined in vivo and ex vivo assay. In the oral acute toxicity test, the LD50 for MCE in rats and mice was 1,564.55 mg/kg (95% confidence interval 1,386.97–1,764.95 mg/kg) and 1,024.33 mg/kg (95% confidence interval 964.27–1,087.30 mg/kg), respectively. The dose range tested had no significant effect on hematology, clinical chemistry, and histopathological findings in rodents in the long-term toxicity assessment. The results of the bacterial reverse mutation, sperm abnormality and micronucleus test showed negative results and lack of mutagenicity and teratogenicity; the results of the rat teratogenicity test showed no significant reproductive or embryotoxicity. The results indicate that MCE was safe in the dose range tested in this preclinical safety assessment. This study provides data to support the further development of maximum residue limits (MRLs) for MCE.
Collapse
Affiliation(s)
- Zhen Dong
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Key Laboratory of Chinese Veterinary Medicine in Hunan Province, Hunan Agricultural University, Changsha, China
| | - Shu-Sheng Tang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Lan Ma
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong, China
| | - Chang-Hong Li
- Hunan MICOLTA Biological Resources Co., Ltd., Changsha, China
| | - Zhao-Shan Tang
- Hunan MICOLTA Biological Resources Co., Ltd., Changsha, China
| | - Zi-Hui Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Key Laboratory of Chinese Veterinary Medicine in Hunan Province, Hunan Agricultural University, Changsha, China
- *Correspondence: Zi-Hui Yang, ; Jian-Guo Zeng,
| | - Jian-Guo Zeng
- College of Veterinary Medicine, Hunan Agricultural University, Changsha, China
- Key Laboratory of Chinese Veterinary Medicine in Hunan Province, Hunan Agricultural University, Changsha, China
- *Correspondence: Zi-Hui Yang, ; Jian-Guo Zeng,
| |
Collapse
|
5
|
Sanguinarine-Chelerythrine Fraction of Coptis chinensis Exerts Anti-inflammatory Activity in Carrageenan Paw Oedema Test in Rats and Reveals Reduced Gastrotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1504929. [PMID: 35340213 PMCID: PMC8942652 DOI: 10.1155/2022/1504929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 01/24/2023]
Abstract
Inflammatory diseases are a common therapeutic problem and nonsteroidal anti-inflammatory drugs are not deprived of side effects, of which ulcerogenic activity is one of the most frequent. The aim of the study was to evaluate the anti-inflammatory activity of the sanguinarine-chelerythrine (SC) fraction of Coptis chinensis and its influence on the integrity of gastric mucosa. The study was conducted on sixty male rats randomly divided into six experimental groups: two control groups (a negative control group CON and a positive control group CAR); three groups receiving an investigational fraction of C. chinensis (1, 5, 10 mg/kg i.g.) named SC1, SC5, and SC10, respectively; and a group receiving indomethacin (IND) (10 mg/kg i.g.) as a reference drug. In all animals, the carrageenan-induced paw oedema was measured; PGE2 release, TNFα production, and MMP-9 concentration in inflamed tissue were determined. Additionally, the macroscopic and microscopic damage of gastric mucosa was evaluated. Administration of SC dose-dependently inhibited the second phase of carrageenan rat paw oedema and PGE2 release, decreased the production of TNFα, and reduced the concentration of MMP-9, and the efficacy of the highest dose was comparable to the effect of IND. Contrary to IND, no gastrotoxic activity of SC was detected. The investigated sanguinarine-chelerythrine fraction of C. chinensis seems to be a promising candidate for further research on new anti-inflammatory and analgesic drugs characterized with a safer gastric profile compared to existing NSAIDs.
Collapse
|
6
|
Zhou J, Peng F, Cao X, Xie X, Chen D, Yang L, Rao C, Peng C, Pan X. Risk Compounds, Preclinical Toxicity Evaluation, and Potential Mechanisms of Chinese Materia Medica-Induced Cardiotoxicity. Front Pharmacol 2021; 12:578796. [PMID: 33867974 PMCID: PMC8044783 DOI: 10.3389/fphar.2021.578796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/29/2021] [Indexed: 02/05/2023] Open
Abstract
Chinese materia medica (CMM) has been applied for the prevention and treatment of diseases for thousands of years. However, arrhythmia, myocardial ischemia, heart failure, and other cardiac adverse reactions during CMM application were gradually reported. CMM-induced cardiotoxicity has aroused widespread attention. Our review aimed to summarize the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity. All relevant articles published on the PubMed, Embase, and China National Knowledge Infrastructure (CNKI) databases for the latest twenty years were searched and manually extracted. The risk substances of CMM-induced cardiotoxicity are relatively complex. A single CMM usually contains various risk compounds, and the same risk substance may exist in various CMM. The active and risk substances in CMM may be transformed into each other under different conditions, such as drug dosage, medication methods, and body status. Generally, the risk compounds of CMM-induced cardiotoxicity can be classified into alkaloids, terpenoids, steroids, heavy metals, organic acids, toxic proteins, and peptides. Traditional evaluation methods of chemical drug-induced cardiotoxicity primarily include cardiac function monitoring, endomyocardial biopsy, myocardial zymogram, and biomarker determination. In the preclinical stage, CMM-induced cardiotoxicity should be systematically evaluated at the overall, tissue, cellular, and molecular levels, including cardiac function, histopathology, cytology, myocardial zymogram, and biomarkers. Thanks to the development of systematic biology, the higher specificity and sensitivity of biomarkers, such as genes, proteins, and metabolic small molecules, are gradually applied for evaluating CMM-induced cardiotoxicity. Previous studies on the mechanisms of CMM-induced cardiotoxicity focused on a single drug, monomer or components of CMM. The interaction among ion homeostasis (sodium, potassium, and calcium ions), oxidative damage, mitochondrial injury, apoptosis and autophagy, and metabolic disturbance is involved in CMM-induced cardiotoxicity. Clarification on the risk compounds, preclinical toxicity evaluation, and potential mechanisms of CMM-induced cardiotoxicity must be beneficial to guide new CMM development and post-marketed CMM reevaluation.
Collapse
Affiliation(s)
- Jie Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Fu Peng
- West China School of Pharmacy, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dayi Chen
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lian Yang
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chaolong Rao
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqi Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- School of Pharmacy and School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Gaziano R, Moroni G, Buè C, Miele MT, Sinibaldi-Vallebona P, Pica F. Antitumor effects of the benzophenanthridine alkaloid sanguinarine: Evidence and perspectives. World J Gastrointest Oncol 2016; 8:30-39. [PMID: 26798435 PMCID: PMC4714144 DOI: 10.4251/wjgo.v8.i1.30] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/01/2015] [Accepted: 11/04/2015] [Indexed: 02/05/2023] Open
Abstract
Historically, natural products have represented a significant source of anticancer agents, with plant-derived drugs becoming increasingly explored. In particular, sanguinarine is a benzophenanthridine alkaloid obtained from the root of Sanguinaria canadensis, and from other poppy Fumaria species, with recognized anti-microbial, anti-oxidant and anti-inflammatory properties. Recently, increasing evidence that sanguinarine exibits anticancer potential through its capability of inducing apoptosis and/or antiproliferative effects on tumor cells, has been proved. Moreover, its antitumor seems to be due not only to its pro-apoptotic and inhibitory effects on tumor growth, but also to its antiangiogenic and anti-invasive properties. Although the precise mechanisms underlying the antitumor activity of this compound remain not fully understood, in this review we will focus on the most recent findings about the cellular and molecular pathways affected by sanguinarine, together with the rationale of its potential application in clinic. The complex of data currently available suggest the potential application of sanguinarine as an adjuvant in the therapy of cancer, but further pre-clinical studies are needed before such an antitumor strategy can be effectively translated in the clinical practice.
Collapse
|
8
|
Rapid human melanoma cell death induced by sanguinarine through oxidative stress. Eur J Pharmacol 2013; 705:109-18. [PMID: 23499690 DOI: 10.1016/j.ejphar.2013.02.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 12/14/2022]
Abstract
Sanguinarine is a natural isoquinoline alkaloid derived from the root of Sanguinaria canadensis and from other poppy fumaria species, and is known to have a broad spectrum of pharmacological properties. Here we have found that sanguinarine, at low micromolar concentrations, showed a remarkably rapid killing activity against human melanoma cells. Time-lapse videomicroscopy showed rapid morphological changes compatible with an apoptotic cell death, which was further supported by biochemical markers, including caspase activation, poly(ADP-ribose) polymerase (PARP) cleavage and DNA breakdown. Pan-caspase inhibition blocked sanguinarine-induced cell death. Sanguinarine treatment also induced an increase in intracellular calcium concentration, which was inhibited by dantrolene, and promoted cleavage of BAP-31, thus suggesting a putative role for Ca(2+) release from endoplasmic reticulum and a cross-talk between endoplasmic reticulum and mitochondria in the anti-melanoma action of sanguinarine. Sanguinarine disrupted the mitochondrial transmembrane potential (ΔΨm), released cytochrome c and Smac/DIABLO from mitochondria to cytosol, and induced oxidative stress. Overexpression of Bcl-XL by gene transfer did not prevent sanguinarine-mediated cell death, oxidative stress or release of mitochondrial apoptogenic proteins. However, preincubation with N-acetyl-l-cysteine (NAC) prevented sanguinarine-induced oxidative stress, PARP cleavage, release of apoptogenic mitochondrial proteins, and cell death. Pretreatment with glutathione (GSH) also inhibited the anti-melanoma activity of sanguinarine. Thus, pretreatment with the thiol antioxidants NAC and GSH abrogated the killing activity of sanguinarine. Taking together, our data indicate that sanguinarine is a very rapid inducer of human melanoma caspase-dependent cell death that is mediated by oxidative stress.
Collapse
|
9
|
Zhang J, Du Z, Wei X. Binding of nucleosides with the cytotoxic plant alkaloid sanguinarine: Spectroscopic and thermodynamic studies. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4728-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
10
|
Effects of chloroacetaldehyde in 2-chloroethanol-induced cardiotoxicity. Food Chem Toxicol 2011; 49:1063-7. [DOI: 10.1016/j.fct.2011.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 12/10/2010] [Accepted: 01/17/2011] [Indexed: 11/21/2022]
|
11
|
Choy CS, Cheah KP, Chiou HY, Li JS, Liu YH, Yong SF, Chiu WT, Liao JW, Hu CM. Induction of hepatotoxicity by sanguinarine is associated with oxidation of protein thiols and disturbance of mitochondrial respiration. J Appl Toxicol 2009; 28:945-56. [PMID: 18548746 DOI: 10.1002/jat.1360] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sanguinarine (SANG) has been suggested to be one of the principle constituents responsible for the toxicity of Argemone mexicana seed oil. In this study, we focused on the possible mechanism of SANG-induced hepatotoxicity. The serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and lactate dehydrogenase (LDH) activities, hepatic vacuolization, lipid accumulation and lipid peroxidation of the liver were increased, and triglyceride (TG) was decreased in SANG-treated mice (10 mg kg(-1) i.p.), indicating damage to the liver. SANG induced cell death and DNA fragmentation, in a concentration- (0-30 microm) and time-dependent (0-24 h) manner, and the cytotoxicity of SANG (15 microm) was accompanied by an increase in reactive oxygen species and a lessening in protein thiol content; these outcomes were reversed by glutathione, N-acetyl-l-cysteine and 1,4-dithiothretol, and slightly improved by other antioxidants in hepatocytes. SANG can affect the function of mitochondria, leading to the depletion of the mitochondrial membrane potential and adenosine 5'-triphosphate content of hepatocytes. SANG caused an uncoupling effect of the respiratory chain at lower concentrations, but inhibited the respiratory chain at higher concentrations in mitochondria isolated from rat liver. In conclusion, the data suggest that SANG is a liver toxin that induces cytotoxicity in liver cells, possibly through oxidation of protein thiols, resulting in oxidative stress on the cells and disturbance of mitochondrial function.
Collapse
Affiliation(s)
- Cheuk-Sing Choy
- Emergency Department, Taipei Medical University Hospital, Taipei, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
Sanguinarine is an alkaloid found in many medicinal plants. It has diverse biological activities, including modulation of nuclear factor-kappaB and of several enzymes. It is also known to induce apoptosis, perturb microtubules, and to have antimicrobial effects. This article reviews its cardiovascular properties, including hypotensive, antiplatelet, and positive inotropic effects. Its pharmacokinetics, and toxicology, including its carcinogenic potential, are also discussed. Further pharmacological and toxicological studies with sanguinarine are needed before its therapeutic use can be considered.
Collapse
Affiliation(s)
- I Mackraj
- Department of Human Physiology, Nelson R. Mandela School of Medicine, University of KwaZulu, Durban, South Africa.
| | | | | |
Collapse
|
13
|
Chan YC, Chang SC, Hsuan SL, Chien MS, Lee WC, Kang JJ, Wang SC, Liao JW. Cardiovascular effects of herbicides and formulated adjuvants on isolated rat aorta and heart. Toxicol In Vitro 2007; 21:595-603. [PMID: 17267167 DOI: 10.1016/j.tiv.2006.12.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Revised: 11/08/2006] [Accepted: 12/07/2006] [Indexed: 10/23/2022]
Abstract
Various formulations of agricultural chemicals, including solutions, wettable powders, and emulsifiable concentrates, contain adjuvants of solvents and surfactants in addition to active ingredients. Among these formulations, herbicides are among the most commonly used pesticides globally. Some pesticides have been demonstrated to cause severe circulatory failure in poisoned humans. To clarify the potential risk of herbicides and their adjuvants influence on the cardiovascular system, four technical grade (TG) herbicides and their end products (EP), including paraquat, glyphosate, glufosinate, and atrazine, as well as their formulated adjuvants isopropylamine (IPA), polyoxyethylene alkylether sulfate (AES), ethyl acetate (EA), xylene, petrolium-170 (P-170), and solvesso-100 (S-100), were assessed to determine their effects on isolated rat aorta and heart. The results revealed that the vasorelaxation effects of the herbicide EPs exceeded those of TGs, and atrazine produced more significant vasorelaxation in rat aortas than the other herbicides tested. The formulated adjuvants of IPA did not affect the aorta; however, AES, EA, xylene, P-170 and S-100 caused significant vasorelaxation. Herbicide EPs-induced vasorelaxation was generally endothelium-dependent. Furthermore, the TG and EP of paraquat, and the TG of glufosinate and glyphosate were found to have no effect on the isolated heart. However, the normal twitch tensions of the isolated heart were significantly inhibited by EPs of glyphosate and glufosinate, and by TG and EP of atrazine. Although, the adjuvants of IPA appeared unaffected, however, AES, EA, xylene, P-170 and S-100 caused complete inhibition and contraction on the isolated hearts. These results indicated that the adjuvants of herbicides might enhance hypotension and contributed to cardiovascular disorders during intoxication.
Collapse
Affiliation(s)
- Yin-Ching Chan
- Department of Food and Nutrition, Providence University, Taichung 433, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Jeng JH, Wu HL, Lin BR, Lan WH, Chang HH, Ho YS, Lee PH, Wang YJ, Wang JS, Chen YJ, Chang MC. Antiplatelet effect of sanguinarine is correlated to calcium mobilization, thromboxane and cAMP production. Atherosclerosis 2006; 191:250-8. [PMID: 16797553 DOI: 10.1016/j.atherosclerosis.2006.05.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Revised: 04/25/2006] [Accepted: 05/04/2006] [Indexed: 10/24/2022]
Abstract
Sanguinarine is a plant alkaloid present in the root of Sanguinaria canadensis and Poppy fumaria species. Sanguinarine has been used as an antiseptic mouth rinse and a toothpaste additive to reduce dental plaque and gingival inflammation. In this study, we investigated the antiplatelet effects of sanguinarine, aiming to extend its potential pharmacological applications. Sanguinarine inhibited platelet aggregation induced by arachidonic acid (AA), collagen, U46619 and sub-threshold concentration of thrombin (0.05 U/ml) with IC(50) concentrations of 8.3, 7.7, 8.6 and 4.4 microM, respectively. Sanguinarine (5-10 microM) inhibited 10-31% of platelet TXB(2) production, but not platelet aggregation induced by higher concentration of thrombin (0.1 U/ml). SQ29548, a thromboxane receptor antagonist, inhibited the AA-induced platelet aggregation but not TXB(2) production. Sanguinarine suppressed cyclooxygenase-1 (COX-1) activity (IC(50)=28 microM), whereas its effect on COX-2 activity was minimal. Sanguinarine (8, 10 microM) further inhibited the AA-induced Ca(2+) mobilization by 27-62%. In addition, SQ22536, an adenylate cyclase inhibitor, attenuated the inhibitory effect of sanguinarine toward AA-induced platelet Ca(2+) mobilization and aggregation. These results suggest that sanguinarine is a potent antiplatelet agent, which activates adenylate cyclase, inhibits platelet Ca(2+) mobilization, TXB(2) production as well as suppresses COX-1 enzyme activity. Sanguinarine may have therapeutic potential for treatment of cardiovascular diseases related to platelet aggregation.
Collapse
Affiliation(s)
- Jiiang-Huei Jeng
- Laboratory of Dental Pharmacology and Toxicology, Department of Dentistry, National Taiwan University Hospital and National Taiwan University, College of Medicine, Taipei, Taiwan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Biomedical Vignette. J Biomed Sci 2005. [DOI: 10.1007/s11373-005-4564-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|