1
|
Distribution and Expression of Pulmonary Ionocyte-Related Factors CFTR, ATP6V0D2, and ATP6V1C2 in the Lungs of Yaks at Different Ages. Genes (Basel) 2023; 14:genes14030597. [PMID: 36980869 PMCID: PMC10048051 DOI: 10.3390/genes14030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
In order to reveal the distribution and expression characteristics of the pulmonary ionocyte-related factors CFTR, ATP6V0D2, and ATP6V1C2 in the lungs of yaks of different ages. Explore the possible regulation of these pulmonary ionocyte-related factors in the yak lung for adaptation to high-altitude hypoxia. The localization and expression of CTFR, ATP6V0D2, and ATP6V1C2 in the lungs of newborn, juvenile, adult, and elderly yaks were studied using immunohistochemistry, quantitative reverse transcription PCR, and Western blotting. Immunohistochemistry showed that CFTR, ATP6V0D2 and ATP6V1C2 were mainly localized in the ciliated cells and club cells of the epithelial mucosal layer of the bronchus and its branches in the lungs. For the qRT-PCR, expression of CFTR, ATP6V0D2 and ATP6V1C2 in the yak lungs varied according to age. For Western blotting, CFTR expression in the newborn group was significantly higher than in the other three groups. ATP6V0D2 expression of the adult group was significantly higher. ATP6V1C2 expression was the highest in the juvenile group (p < 0.05). This study showed that ciliated cells and club cells were related to the pulmonary ionocytes in yaks. CFTR, ATP6V0D2, and ATP6V1C2 were related to adaptations of yak lungs to high altitude hypoxia, through prevention of airway damage.
Collapse
|
2
|
Han L, Kaushal A, Zhang H, Kadalayil L, Duan J, Holloway JW, Karmaus W, Banerjee P, Tsai SF, Wen HJ, Arshad SH, Wang SL. DNA Methylation at Birth is Associated with Childhood Serum Immunoglobulin E Levels. Epigenet Insights 2021; 14:25168657211008108. [PMID: 33870089 PMCID: PMC8024453 DOI: 10.1177/25168657211008108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/25/2020] [Indexed: 01/09/2023] Open
Abstract
Immunoglobulin E (IgE) is known to play an important role in allergic diseases. Epigenetic traits acquired due to modification of deoxyribonucleic acid (DNA) methylation (DNAm) in early life may have phenotypic consequences through their role in transcriptional regulation with relevance to the developmental origins of diseases including allergy. However, epigenome-scale studies on the longitudinal association of cord blood DNAm with IgE over time are lacking. Our study aimed to examine the association of DNAm at birth with childhood serum IgE levels during early life. Genome-scale DNAm and total serum IgE measured at birth, 5, 8, and 11 years of children in the Taiwan Maternal and Infant Cohort Study were included in the study in the discovery stage. Linear mixed models were implemented to assess the association between cord blood DNAm at ~310K 5′-cytosine-phosphate-guanine-3′ (CpG) sites with repeated IgE measurements, adjusting for cord blood IgE. Identified statistically significant CpGs (at a false discovery rate, FDR, of 0.05) were further tested in an independent replication cohort, the Isle of Wight (IoW) birth cohort. We mapped replicated CpGs to genes and conducted gene ontology analysis using ToppFun to identify significantly enriched pathways and biological processes of the genes. Cord blood DNAm of 273 CpG sites were significantly (FDR = 0.05) associated with IgE levels longitudinally. Among the identified CpGs available in both cohorts (184 CpGs), 92 CpGs (50%) were replicated in the IoW in terms of consistency in direction of associations between DNA methylation and IgE levels later in life, and 16 of the 92 CpGs showed statistically significant associations (P < .05). Gene ontology analysis identified 4 pathways (FDR = 0.05). The identified 16 CpG sites had the potential to serve as epigenetic markers associated with later IgE production, beneficial to allergic disease prevention and intervention.
Collapse
Affiliation(s)
- Luhang Han
- Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
| | | | - Hongmei Zhang
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Latha Kadalayil
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Jiasong Duan
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - John W Holloway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, UK.,Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Wilfried Karmaus
- Division of Epidemiology, Biostatistics, and Environmental Health, University of Memphis, Memphis, TN, USA
| | - Pratik Banerjee
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL, USA
| | - Shih-Fen Tsai
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli
| | - Hui-Ju Wen
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli
| | - Syed Hasan Arshad
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK.,David Hide Asthma and Allergy Research Centre, St Mary's Hospital, Newport, Isle of Wight, UK
| | - Shu-Li Wang
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Miaoli.,School of Public Health, National Defense Medical Center, Taipei.,Department of Public Health, China Medical University, Taichung
| |
Collapse
|
3
|
Rahman S, Yamato I, Saijo S, Mizutani K, Takamuku Y, Ishizuka-Katsura Y, Ohsawa N, Terada T, Shirouzu M, Yokoyama S, Murata T. Binding interactions of the peripheral stalk subunit isoforms from human V-ATPase. Biosci Biotechnol Biochem 2016; 80:878-90. [PMID: 26865189 DOI: 10.1080/09168451.2015.1135043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mammalian peripheral stalk subunits of the vacuolar-type H(+)-ATPases (V-ATPases) possess several isoforms (C1, C2, E1, E2, G1, G2, G3, a1, a2, a3, and a4), which may play significant role in regulating ATPase assembly and disassembly in different tissues. To better understand the structure and function of V-ATPase, we expressed and purified several isoforms of the human V-ATPase peripheral stalk: E1G1, E1G2, E1G3, E2G1, E2G2, E2G3, C1, C2, H, a1NT, and a2NT. Here, we investigated and characterized the isoforms of the peripheral stalk region of human V-ATPase with respect to their affinity and kinetics in different combination. We found that different isoforms interacted in a similar manner with the isoforms of other subunits. The differences in binding affinities among isoforms were minor from our in vitro studies. However, such minor differences from the binding interaction among isoforms might provide valuable information for the future structural-functional studies of this holoenzyme.
Collapse
Affiliation(s)
- Suhaila Rahman
- a Department of Biological Science and Technology , Tokyo University of Science , Tokyo , Japan
| | - Ichiro Yamato
- a Department of Biological Science and Technology , Tokyo University of Science , Tokyo , Japan
| | - Shinya Saijo
- a Department of Biological Science and Technology , Tokyo University of Science , Tokyo , Japan
| | - Kenji Mizutani
- a Department of Biological Science and Technology , Tokyo University of Science , Tokyo , Japan.,b Department of Chemistry , Graduate School of Science, Chiba University , Chiba , Japan
| | - Yuuki Takamuku
- b Department of Chemistry , Graduate School of Science, Chiba University , Chiba , Japan
| | | | - Noboru Ohsawa
- c RIKEN Systems and Structural Biology Center , Yokohama , Japan
| | - Takaho Terada
- c RIKEN Systems and Structural Biology Center , Yokohama , Japan
| | - Mikako Shirouzu
- c RIKEN Systems and Structural Biology Center , Yokohama , Japan
| | - Shigeyuki Yokoyama
- c RIKEN Systems and Structural Biology Center , Yokohama , Japan.,d Department of Biophysics and Biochemistry , Graduate School of Science, The University of Tokyo , Tokyo , Japan
| | - Takeshi Murata
- b Department of Chemistry , Graduate School of Science, Chiba University , Chiba , Japan.,c RIKEN Systems and Structural Biology Center , Yokohama , Japan.,e Molecular Chirality Research Center, Chiba University , Chiba , Japan.,f JST, PRESTO , Chiba , Japan
| |
Collapse
|
4
|
Takano M, Horiuchi T, Sasaki Y, Kato Y, Nagai J, Yumoto R. Expression and function of PEPT2 during transdifferentiation of alveolar epithelial cells. Life Sci 2013; 93:630-6. [DOI: 10.1016/j.lfs.2013.08.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 08/10/2013] [Accepted: 08/15/2013] [Indexed: 01/25/2023]
|