1
|
Kulyar MFEA, Mo Q, Yao W, Li Y, Nawaz S, Loon KS, Ahmed AE, Alsaegh AA, Al Syaad KM, Akhtar M, Bhutta ZA, Li J, Qi D. Modulation of apoptosis and Inflammasome activation in chondrocytes: co-regulatory role of Chlorogenic acid. Cell Commun Signal 2024; 22:2. [PMID: 38169388 PMCID: PMC10759508 DOI: 10.1186/s12964-023-01377-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/01/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND The B-cell lymphoma 2 (Bcl-2) protein regulates programmed cell death throughout the disease conditions by upholding apoptotic pathways. However, the mechanism by which it's expressed in chondrocytes still needs to be studied in chondrocyte-related disorders. Additionally, exploring the potential therapeutic role of Chlorogenic acid (CGA) in confluence with Bcl-2 modulation is of significant interest. METHODS In vivo and in vitro studies were performed according to our previous methodologies. The chondrocytes were cultured in specific growth media under standard conditions after expression verification of different microRNAs through high-throughput sequencing and verification of Bcl-2 involvement in tibial growth plates. The effect of Bcl-2 expression was investigated by transfecting chondrocytes with miR-460a, siRNA, and their negative controls alone or in combination with CGA. The RNA was extracted and subjected to a reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Western blot analysis and immunofluorescence assays were performed to visualize the intracellular localization of Bcl-2 and associated proteins related to apoptotic and inflammasome pathways. Moreover, apoptosis through flow cytometry was also performed to understand the modulation of concerning pathways. RESULTS The suppression of Bcl-2 induced higher apoptosis and mitochondrial dysfunction, leading to IL-1β maturation and affecting the inflammasome during chondrocyte proliferation. Conversely, overexpression attenuated the activation, as evidenced by reduced caspase activity and IL-1β maturation. In parallel, CGA successfully reduced siRNA-induced apoptosis by decreasing Cytochrome C (Cyto C) release from the mitochondria to the cytoplasm, which in turn decreased Caspase-3 and Caspase-7 cleavage with Bcl-2-associated X protein (Bax). Furthermore, siBcl-2 transfection and CGA therapy increased chondrocyte proliferation and survival. The CGA also showed a promising approach to maintaining chondrocyte viability by inhibiting siRNA-induced apoptosis. CONCLUSIONS Targeting Bcl-2-mediated regulation might be a possible treatment for chondrocyte-related conditions. Moreover, these results add knowledge of the complicated processes underlying chondrocyte function and the pathophysiology of related diseases, highlighting the significance of target specific therapies. Video Abstract.
Collapse
Affiliation(s)
- Muhammad Fakhar-E-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, CA, 92521, USA
| | - Yan Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kyein San Loon
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Ahmed Ezzat Ahmed
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Aiman A Alsaegh
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Mecca, Saudi Arabia
| | - Khalid M Al Syaad
- Biology Department, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Muhammad Akhtar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Zeeshan Ahmad Bhutta
- Laboratory of Veterinary Immunology and Biochemistry, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Islam M, Anvarbatcha R, Kunnathodi F, Athar MT, Tariq M. Quinacrine enhances the efficacy of cisplatin by increasing apoptosis and modulating cancer survival proteins in a colorectal cancer cell line. J Cancer Res Ther 2023; 19:1988-1997. [PMID: 38376308 DOI: 10.4103/jcrt.jcrt_902_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 02/21/2024]
Abstract
BACKGROUND Cisplatin and platinum-based compounds have been used successfully to treat various cancers. However, their use is often restricted due to the acquired resistance by cancer cells. Over-expression of p53 and inhibition of NF-kB sensitize several cancer cells towards cisplatin-induced apoptosis. Quinacrine, a cytotoxic drug with predictable safety revealed to concurrently suppress NF-kB and activate p53, which may be an attractive adjuvant in cisplatin chemotherapy. Therefore, the objective of the present study was to establish the role of quinacrine as an adjuvant in lowering the dose of cisplatin during cancer therapy to circumvent its toxic effects. MATERIALS AND METHODS The colon cancer (HCT-8) cells were cultured and cell survival assays were performed using standard procedures. Cell cycle arrest and the extent of apoptosis were determined using a muse cell analyzer. Cancer survival proteins were analyzed using western blotting techniques. RESULTS AND CONCLUSION We demonstrated that concomitant use of quinacrine with cisplatin increased cell apoptosis, suppressed cell proliferation and inhibited colony formation in a colorectal cancer cell line. Moreover, cell cycle arrest in the G0/G1 and G2/M phases and upregulation of p53 expression were observed. There was also downregulation of NF-kB and Bcl-xL protein expressions, both of which are associated with enhanced cell apoptosis and an increase in the sensitivity of cancer cells to cisplatin, overcoming its chemoresistance. Overall, the results of the present study and available literature clearly indicate that the use of quinacrine as an adjuvant with cisplatin may enhance its anti-cancer activity and reduce chemoresistance.
Collapse
Affiliation(s)
- Mozaffarul Islam
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Riyasdeen Anvarbatcha
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Faisal Kunnathodi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Md Tanwir Athar
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Dentistry and Pharmacy, Buraydah Colleges, Buraydah, Al-Qassim, Saudi Arabia
| | - Mohammad Tariq
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Li S, Li Q, Lü J, Zhao Q, Li D, Shen L, Wang Z, Liu J, Xie D, Cho WC, Xu S, Yu Z. Targeted Inhibition of miR-221/222 Promotes Cell Sensitivity to Cisplatin in Triple-Negative Breast Cancer MDA-MB-231 Cells. Front Genet 2020; 10:1278. [PMID: 32010177 PMCID: PMC6971202 DOI: 10.3389/fgene.2019.01278] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 11/20/2019] [Indexed: 12/14/2022] Open
Abstract
Cisplatin has been widely used in the treatment of a various types of cancers including triple-negative breast cancer (TNBC) by damaging DNA and inducing apoptosis. However, its anti-cancer effects are often limited due to chemo-resistance, which is one of the main reasons causing cancer relapse and metastasis. To overcome resistance, cisplatin is often used in combination with other drugs or molecules. Our study found that the targeted inhibition of miR-221/222 in MDA-MB-231 cells promoted cisplatin-induced cell apoptosis, and increased the cell sensitivity to cisplatin in vitro. Much higher expression levels of miR-221/222 were detected in the cisplatin-resistant MDA-MB-231 cells and in cisplatin-resistant breast cancer patients. The combination chemotherapy of cisplatin with anti-miR-221/222 showed much higher efficiency in suppressing tumor growth in the mice transplanted with MDA-MB-231 cells. In addition, anti-miR-221 and anti-miR-222 showed synergetic effects on improving sensitivity to cisplatin in MDA-MB-231 cells. Suppression of SOCS1-STAT3-Bcl-2 pathway and activation of p53-Pten signaling both contribute to anti-miR-221/222-induced sensitivity to cisplatin in MDA-MB-231 cells. These findings suggest the potential of a novel approach for the combination chemotherapy of cisplatin with small non-coding RNA in treatment of human TNBC.
Collapse
Affiliation(s)
- Shujun Li
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Maternal and Children Health Management, The Third Hospital of BaoGang Group, Baotou, China
| | - Qun Li
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinhui Lü
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qian Zhao
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Danni Li
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pathological Physiology, Tongji University School of Medicine, Shanghai, China
| | - Lei Shen
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongrui Wang
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junjun Liu
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dongping Xie
- Department of Pathological Physiology, Tongji University School of Medicine, Shanghai, China
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, Shanghai, China
| | - Zuoren Yu
- Research Center for Translational Medicine, Department of Medical Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Pathological Physiology, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Muraki M. Sensitization to cell death induced by soluble Fas ligand and agonistic antibodies with exogenous agents: A review. AIMS MEDICAL SCIENCE 2020. [DOI: 10.3934/medsci.2020011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
5
|
Li J, Yap SQ, Yoong SL, Nayak TR, Chandra GW, Ang WH, Panczyk T, Ramaprabhu S, Vashist SK, Sheu FS, Tan A, Pastorin G. Carbon nanotube bottles for incorporation, release and enhanced cytotoxic effect of cisplatin. CARBON 2019; 50:1625-1634. [PMID: 31105316 PMCID: PMC6522380 DOI: 10.1016/j.carbon.2011.11.043] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Carbon nanotubes (CNTs) have emerged as promising drug delivery systems particularly for cancer therapy, due to their abilities to overcome some of the challenges faced by cancer treatment, namely non-specificity, poor permeability into tumour tissues, and poor stability of anticancer drugs. Encapsulation of anticancer agents inside CNTs provides protection from external deactivating agents. However, the open ends of the CNTs leave the encapsulated drugs exposed to the environment and eventually their uncontrolled release before reaching the desired target. In this study, we report the successful encapsulation of cisplatin, a FDA-approved chemotherapeutic drug, into multi-walled carbon nanotubes and the capping at the ends with functionalised gold nanoparticles to achieve a "carbon nanotube bottle" structure. In this proof-of-concept study, these caps did not prevent the encapsulation of drug in the inner space of CNTs; on the contrary, we achieved higher drug loading inside the nanotubes in comparison with data reported in literature. In addition, we demonstrated that encapsulated cisplatin could be delivered in living cells under physiological conditions to exert its pharmacological action.
Collapse
Affiliation(s)
- Jian Li
- Department of Pharmacy, National University of Singapore, Science Drive 2, S15#05-PI-03, Singapore 117543, Singapore
| | - Siew Qi Yap
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, S15#05-PI-01, Singapore 117543, Singapore
| | - Sia Lee Yoong
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), 28 Medical Drive, #05-01, Singapore 117456, Singapore
| | - Tapas Ranjan Nayak
- Department of Pharmacy, National University of Singapore, Science Drive 2, S15#05-PI-03, Singapore 117543, Singapore
| | - Gary Wiratama Chandra
- Department of Pharmacy, National University of Singapore, Science Drive 2, S15#05-PI-03, Singapore 117543, Singapore
| | - Wee Han Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 2, S15#05-PI-01, Singapore 117543, Singapore
| | - Tomasz Panczyk
- Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences ul. Niezapominajek 8, 30239 Cracow, Poland
| | - Sundara Ramaprabhu
- Department of Physics, Indian Institute of Technology Madras, Chennai 600 036, India
| | - Sandeep Kumar Vashist
- NUSNNI-NanoCore, National University of Singapore, T-Lab Level 11, 5A Engineering Drive 1, Singapore 117580, Singapore
| | - Fwu-Shan Sheu
- NUSNNI-NanoCore, National University of Singapore, T-Lab Level 11, 5A Engineering Drive 1, Singapore 117580, Singapore
| | - Aaron Tan
- Centre for Nanotechnology and Regenerative Medicine, UCL Division of Surgery and Interventional Science, University College London, UK
| | - Giorgia Pastorin
- Department of Pharmacy, National University of Singapore, Science Drive 2, S15#05-PI-03, Singapore 117543, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS), 28 Medical Drive, #05-01, Singapore 117456, Singapore
- NUSNNI-NanoCore, National University of Singapore, T-Lab Level 11, 5A Engineering Drive 1, Singapore 117580, Singapore
| |
Collapse
|
6
|
Time depended Bcl-2 inhibition might be useful for a targeted drug therapy. Cancer Cell Int 2015; 15:105. [PMID: 26535028 PMCID: PMC4630962 DOI: 10.1186/s12935-015-0254-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/08/2015] [Indexed: 01/29/2023] Open
Abstract
Background Over expression of Bcl-2 is frequently observed in several types of cancers and it is one of the prognostic markers in breast cancer. The importance of the Bcl-2 protein as ideal therapeutic target is the dual role of inhibiting apoptosis and autophagy-mediated cell death. Thus, the bcl-2 targeting may be a strategy of choice to improve treatment efficacy and overcome drug resistance to cancer chemotherapy. For this reason, we designed the siRNA mediated silencing of the Bcl-2 gene in the MCF-7 breast cancer cell line. Objectives The purpose of this research was to investigate the effective Bcl-2 gene silencing by our homemade siRNA, more than previous study. Our data demonstrated that specific inhibition of the Bcl-2 by siRNA induces approximately more than 90 % gene silencing. Methods MCF-7 Cell lines were treated by homemade Bcl-2siRNA for the first time and control siRNA that was transfected with nanoparticle. The cells harvested at 24, 48 and 72 h and transcription level of Bcl-2 was examined by Real Time -PCR analysis. The drug sensitivity was detected by using LDH assay test. Finally Anexin V-FITC test was performed for evaluation of apoptosis. Results In the present study, results showed that targeting the specific sequence of the Bcl-2 by our homemade siRNA in the MCF7 cell line and its effect was more obvious in 24 h in contrast to 48 and 72 h. Conclusions However, we showed here a time dependent blocking of the bcl-2 transcript that might lead to cell dead due autophagy, and not necessarily to apoptosis.
Collapse
|
7
|
Vetrugno C, Muscella A, Fanizzi FP, Cossa LG, Migoni D, De Pascali SA, Marsigliante S. Different apoptotic effects of [Pt(O,O'-acac)(γ-acac)(DMS)] and cisplatin on normal and cancerous human epithelial breast cells in primary culture. Br J Pharmacol 2014; 171:5139-53. [PMID: 24990093 DOI: 10.1111/bph.12831] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 06/16/2014] [Accepted: 06/24/2014] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE The aim of this study was to determine whether [platinum (Pt)(O,O'-acetylacetonate (acac))(γ-acac)(dimethylsulphide (DMS))] is differentially cytotoxic in normal and cancer cells, and to measure comparative levels of cytotoxicity compared with cisplatin in the same cells. EXPERIMENTAL APPROACH We performed experiments on cancerous and normal epithelial breast cells in primary culture obtained from the same patients. The apoptotic effects [Pt(O,O'-acac)(γ-acac)(DMS)] and cisplatin in cancerous and normal breast cells were compared. KEY RESULTS Cancer cells were more sensitive to [Pt(O,O'-acac)(γ-acac)(DMS)] (IC50 = 5.22 ± 1.2 μmol·L(-1)) than normal cells (IC50 = 116.9 ± 8.8 μmol·L(-1)). However, the difference was less strong when cisplatin was used (IC50 = 96.0 ± 6.9 and 61.9 ± 6.1 μmol·L(-1) for cancer and normal cells respectively). Both compounds caused reactive oxygen species (ROS) production with different mechanisms: [Pt(O,O'-acac)(γ-acac)(DMS)] quickly activated NAD(P)H oxidase while cisplatin caused a slower formation of mitochondrial ROS. Cisplatin and [Pt(O,O'-acac)(γ-acac)(DMS)] caused activation of caspases, proteolysis of PARP and modulation of Bcl-2, Bax and Bid. [Pt(O,O'-acac)(γ-acac)(DMS)] also caused leakage of cytochrome c from the mitochondria. Overall, these processes proceeded more quickly in cells treated with [Pt(O,O'-acac)(γ-acac)(DMS)] compared with cisplatin. [Pt(O,O'-acac)(γ-acac)(DMS)] effects were faster and quantitatively greater in cancer than in normal cells. [Pt(O,O'-acac)(γ-acac)(DMS)] caused a fast decrease of mitochondrial membrane potential, especially in cancer cells. CONCLUSIONS AND IMPLICATIONS [Pt(O,O'-acac)(γ-acac)(DMS)] was specific to breast cancer cells in primary culture, and this observation makes this compound potentially more interesting than cisplatin.
Collapse
Affiliation(s)
- Carla Vetrugno
- Cell Physiology Lab, Dipartimento di Scienze e Tecnologie Biologiche e Ambientali (Di.S.Te.B.A.), Universita' del Salento, Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
8
|
Yerlikaya A, Altıkat S, Irmak R, Cavga FZ, Kocacan SA, Boyaci I. Effect of bortezomib in combination with cisplatin and 5‑fluorouracil on 4T1 breast cancer cells. Mol Med Rep 2013; 8:277-81. [PMID: 23660746 DOI: 10.3892/mmr.2013.1466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 04/29/2013] [Indexed: 11/05/2022] Open
Abstract
Bortezomib is a highly selective and reversible inhibitor of the 26S proteasome. It has been approved for the treatment of patients with relapsed and refractory multiple myeloma. A number of studies have been conducted to evaluate the activity and safety of bortezomib either alone or in combination with several cytotoxic agents and radiation. In the current study, the efficacy of bortezomib alone or in combination with cisplatin and 5‑fluorouracil was evaluated in 4T1 breast cancer cells, a highly metastatic murine cancer cell line. Using MTT assay, IC50 values of cisplatin and 5‑fluorouracil were determined to be 14.2 and 8.9 µM for cisplatin and 5‑fluorouracil, respectively. The effects of different concentrations of cisplatin and 5‑fluorouracil in combination with two different concentrations of bortezomib were examined in the 4T1 cells. Statistically significant differences were found when 1 or 5 µM cisplatin was combined with 10 or 50 nM bortezomib. Similarly, 1 µM 5‑fluorouracil or 5 µM 5‑fluorouracil in combination with 10 nM bortezomib caused significant cell death as compared to treatment with single agents. However, 1 or 5 µM 5‑fluorouracil did not potentiate the effects of higher concentrations of bortezomib (50 nM). The effect of the combination of cisplatin, 5‑fluorouracil and bortezomib was determined by soft agar assay. It was confirmed that a combination of cisplatin and bortezomib was more effective than each drug as a monotherapy. Therefore, the combination of cisplatin and bortezomib should be tested further in clinical settings.
Collapse
Affiliation(s)
- Azmi Yerlikaya
- Department of Medical Biology, Faculty of Medicine, Dumlupınar University, Kütahya 43100, Turkey.
| | | | | | | | | | | |
Collapse
|
9
|
Periasamy VS, Alshatwi AA. Tea polyphenols modulate antioxidant redox system on cisplatin-induced reactive oxygen species generation in a human breast cancer cell. Basic Clin Pharmacol Toxicol 2013; 112:374-84. [PMID: 23145928 DOI: 10.1111/bcpt.12035] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 11/12/2012] [Indexed: 01/07/2023]
Abstract
Tea polyphenols (TPP) have potent antioxidant and anticancer properties, particularly in patients undergoing radiation or chemotherapy. However, few studies have been conducted on treatments using a combination of TPP and the conventional chemical anticancer drug cisplatin (CP). This study was designed to investigate the mechanism of the cytotoxicity of total TPP and CP, which may synergistically induce cell death in cancer cells. Here, breast cancer cells (MCF-7) were treated with various concentrations of TPP alone or in combination with the chemotherapeutic drug CP. The effect of TPP on cell growth, intracellular reactive oxygen species (ROS) level, apoptosis and gene expression of caspase-3, caspase-8 and caspase-9 and p53 was investigated. The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay revealed that the MCF-7 cells were less sensitive to growth inhibition by TPP treatment than either CP or the combination therapy. Propidium iodide nuclear staining indicated that exposure to this combination increased the proportion of apoptotic nuclei compared with a single-agent treatment. Flow cytometry analysis was used to quantify changes in intracellular ROS. Detection of activated caspases by fluorescently labelled inhibitors of caspases (FLICA) combined with the plasma membrane permeability assay demonstrated that the percentage of early and late apoptotic/secondary necrotic cells was higher in the cells treated with the combination than in those treated with either TPP or CP alone. The combined TPP and CP treatment synergistically induced apoptosis through both caspase-8 and caspase-9 activation and p53 over-expression. This suggests that TPP plus CP may be used as an efficient antioxidant-based combination therapy for estrogen receptor (ER)-positive and p53-positive breast cancer.
Collapse
Affiliation(s)
- Vaiyapuri S Periasamy
- Nanobiotechnology and Molecular Biology Research Laboratory, Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | | |
Collapse
|
10
|
Graf N, Bielenberg DR, Kolishetti N, Muus C, Banyard J, Farokhzad OC, Lippard SJ. α(V)β(3) integrin-targeted PLGA-PEG nanoparticles for enhanced anti-tumor efficacy of a Pt(IV) prodrug. ACS NANO 2012; 6:4530-9. [PMID: 22584163 PMCID: PMC3358506 DOI: 10.1021/nn301148e] [Citation(s) in RCA: 249] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Targeted delivery of therapeutics to tumor neovasculature is potentially a powerful approach for selective cancer treatment. Integrins are heterodimeric transmembrane proteins involved in cell adhesion and cell signaling, and their expression is commonly upregulated in cancers and inflammatory diseases. The α(v)β(3) integrin is differentially upregulated on angiogenic endothelial cells as well as on many cancer cells. Here we demonstrate the differential targeting of cisplatin prodrug-encapsulated poly(d,l-lactic-co-glycolic acid)-block-polyethylene glycol (PLGA-PEG) nanoparticles (NPs) to the α(v)β(3) integrin on cancer cells using the cyclic pentapeptide c(RGDfK). Cisplatin is one of the most widely used anticancer drugs, and approaches that can improve its therapeutic index are of broad importance. The RGD-targeted Pt(IV)-encapsulated NPs displayed enhanced cytotoxicity as compared to cisplatin administered in its conventional dosage form in model prostate and breast cancer epithelial cells in vitro. Cytotoxicities were also elevated in comparison to those of previously reported systems, a small molecule Pt(IV)-RGD conjugate and a Pt(IV) nanoscale coordination polymer carrying RGD moieties. This result encouraged us also to evaluate the anticancer effect of the new construct in an animal model. The RGD-targeted PLGA-PEG NPs were more efficacious and better tolerated by comparison to cisplatin in an orthotopic human breast cancer xenograft model in vivo.
Collapse
Affiliation(s)
- Nora Graf
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Florea AM, Büsselberg D. Cisplatin as an anti-tumor drug: cellular mechanisms of activity, drug resistance and induced side effects. Cancers (Basel) 2011; 3:1351-71. [PMID: 24212665 PMCID: PMC3756417 DOI: 10.3390/cancers3011351] [Citation(s) in RCA: 1232] [Impact Index Per Article: 88.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/28/2011] [Accepted: 03/03/2011] [Indexed: 12/02/2022] Open
Abstract
Platinum complexes are clinically used as adjuvant therapy of cancers aiming to induce tumor cell death. Depending on cell type and concentration, cisplatin induces cytotoxicity, e.g., by interference with transcription and/or DNA replication mechanisms. Additionally, cisplatin damages tumors via induction of apoptosis, mediated by the activation of various signal transduction pathways, including calcium signaling, death receptor signaling, and the activation of mitochondrial pathways. Unfortunately, neither cytotoxicity nor apoptosis are exclusively induced in cancer cells, thus, cisplatin might also lead to diverse side-effects such as neuro- and/or renal-toxicity or bone marrow-suppression. Moreover, the binding of cisplatin to proteins and enzymes may modulate its biochemical mechanism of action. While a combination-chemotherapy with cisplatin is a cornerstone for the treatment of multiple cancers, the challenge is that cancer cells could become cisplatin-resistant. Numerous mechanisms of cisplatin resistance were described including changes in cellular uptake, drug efflux, increased detoxification, inhibition of apoptosis and increased DNA repair. To minimize cisplatin resistance, combinatorial therapies were developed and have proven more effective to defeat cancers. Thus, understanding of the biochemical mechanisms triggered by cisplatin in tumor cells may lead to the design of more efficient platinum derivates (or other drugs) and might provide new therapeutic strategies and reduce side effects.
Collapse
Affiliation(s)
- Ana-Maria Florea
- Department of Neuropathology, Heinrich-Heine University, Düsseldorf, Germany; E-Mail:
| | - Dietrich Büsselberg
- Weil Cornell Medical College in Qatar, Qatar Foundation-Education City, P.O. Box 24144, Doha, Qatar
- Author to whom correspondence should be addressed; E-Mail:
| |
Collapse
|
12
|
Panda V, Khambat P, Patil S. Mitocans as Novel Agents for Anticancer Therapy: An Overview. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ijcm.2011.24086] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Ahmad S. Platinum-DNA interactions and subsequent cellular processes controlling sensitivity to anticancer platinum complexes. Chem Biodivers 2010; 7:543-66. [PMID: 20232326 DOI: 10.1002/cbdv.200800340] [Citation(s) in RCA: 157] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Platinum-based compounds are widely used as chemotherapeutics for the treatment of a variety of cancers. The anticancer activity of cisplatin and other platinum drugs is believed to arise from their interaction with DNA. Several cellular pathways are activated in response to this interaction, which include recognition by high-mobility group and repair proteins, translesion synthesis by polymerases, and induction of apoptosis. The apoptotic process is regulated by activation of caspases, p53 gene, and several proapoptotic and antiapoptotic proteins. Such cellular processing eventually leads to an inhibition of the replication or transcription machinery of the cell. Deactivation of platinum drugs by thiols, increased nucleotide excision repair of Pt-DNA adducts, decreased mismatch repair, and defective apoptosis result in resistance to platinum therapy. The differences in cytotoxicity of various platinum complexes are attributed to the differential recognition of their adducts by cellular proteins. Cisplatin and oxaliplatin both produce mainly 1,2-GG intrastrand cross-links as major adducts, but oxaliplatin is found to be more active particularly against cisplatin-resistant tumor cells. Mismatch repair and replicative bypass appear to be the processes most likely involved in differentiating the molecular responses to these two agents. This review describes the formation of Pt-DNA adducts, their interaction with cellular components, and biological effects of this interaction.
Collapse
Affiliation(s)
- Saeed Ahmad
- Department of Chemistry, University of Engineering and Technology, Lahore 54890, Pakistan.
| |
Collapse
|
14
|
Kim MM, Mendis E, Kim SK. Laurencia okamurai extract containing laurinterol induces apoptosis in melanoma cells. J Med Food 2008; 11:260-6. [PMID: 18598167 DOI: 10.1089/jmf.2007.575] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Laurinterol is a marine sesquiterpene that has been known to have antimicrobial activity. The purpose of this study is to investigate the effect of Laurencia okamurai extract containing laurinterol (LOEL) on induction of apoptosis in melanoma cells (B16F1). Anticancer activity of LOEL against melanoma cells was shown in a dose-dependent manner by the 1-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. It was for the first time found that LOEL exhibited an excellent effect on the induction of apoptosis as determined by DNA fragmentation, terminal deoxynucleotidyl transferase-mediated dUTP in situ nick-end labeling assay, cell cycle analysis, and measurement of activities of several caspases in melanoma cells. It was also demonstrated that transcriptional activation of p53, a tumor suppressor gene, and activation of p21 promoter by LOEL were involved in the induction of apoptosis by reporter gene assay. In particular, western blot analysis confirmed that LOEL above 5 microg/mL significantly increased the expression level of phospho-p53, the active form. These results indicate that LOEL can induce apoptosis through a p53-dependent pathway in melanoma cells.
Collapse
Affiliation(s)
- Moon-Moo Kim
- Department of Chemistry, Dong-Eui University, Busan, Republic of Korea
| | | | | |
Collapse
|
15
|
[Pt(O,O'-acac)(gamma-acac)(DMS)], a new Pt compound exerting fast cytotoxicity in MCF-7 breast cancer cells via the mitochondrial apoptotic pathway. Br J Pharmacol 2007; 153:34-49. [PMID: 18026127 DOI: 10.1038/sj.bjp.0707576] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE We showed previously that a new Pt complex containing an O,O'-chelated acetylacetonate ligand (acac) and a dimethylsulphide in the Pt coordination sphere, [Pt(O,O'-acac)(gamma-acac)(DMS)], induces apoptosis in HeLa cells. The objective of this study was to investigate the hypothesis that [Pt(O,O'-acac)(gamma-acac)(DMS)] is also cytotoxic in a MCF-7 breast cancer cell line relatively insensitive to cisplatin, and to gain a more detailed analysis of the cell death pathways. EXPERIMENTAL APPROACH Cells were treated with Pt compounds and cytotoxicity tests were performed, together with Western blotting of various proteins involved in apoptosis. The mitochondrial membrane potential was assessed by fluorescence microscopy and spectrofluorometry and the Pt bound to cell fractions was measured by atomic absorption spectrometry. KEY RESULTS In contrast to cisplatin, the cytotoxicity of [Pt(O,O'-acac)(gamma-acac)(DMS)] correlated with cellular accumulation but not with DNA binding. Also, the Pt content in DNA bases was considerably higher for cisplatin than for [Pt(O,O'-acac)(gamma-acac)(DMS)], thus excluding DNA as a target of [Pt(O,O'-acac)(gamma-acac)(DMS)]. [Pt(O,O'-acac)(gamma-acac)(DMS)] exerted high and fast apoptotic processes in MCF-7 cells since it provoked: (a) mitochondria depolarization; (b) cytochrome c accumulation in the cytosol; (c) translocation of Bax and truncated-Bid from cytosol to mitochondria and decreased expression of Bcl-2; (d) cleavage of caspases -7 and -9, and PARP degradation; (e) chromatin condensation and DNA fragmentation. CONCLUSIONS AND IMPLICATIONS [Pt(O,O'-acac)(gamma-acac)(DMS)] is highly cytotoxic for MCF-7 cells, cells relatively resistant to many chemotherapeutic agents, as it activates the mitochondrial apoptotic pathway. Hence, [Pt(O,O'-acac)(gamma-acac)(DMS)] has the potential to provide us with new opportunities for therapeutic intervention.
Collapse
|
16
|
Pandyra AA, Berg R, Vincent M, Koropatnick J. Combination silencer RNA (siRNA) targeting Bcl-2 antagonizes siRNA against thymidylate synthase in human tumor cell lines. J Pharmacol Exp Ther 2007; 322:123-32. [PMID: 17452420 DOI: 10.1124/jpet.106.115394] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nonspecific toxicity and resistance to traditional cytotoxic drugs are impediments to effective cancer therapy. Development of drugs targeting cellular molecules that mediate malignant characteristics may improve therapy. Antisense drugs that reduce mRNA and protein on which tumor cells depend for viability and treatment resistance are examples of such candidates. In particular, combining antisense drugs to simultaneously reduce multiple mRNAs/proteins is predicted to enhance antitumor effects. We hypothesized that combined treatment with silencer RNAs (siRNAs) targeting molecules mediating both proliferation (thymidylate synthase; TS) and survival (Bcl-2) would decrease proliferation and sensitize human tumor cells to nonantisense drugs in a greater-than-additive manner. We report that simultaneous treatment of human cervical carcinoma (HeLa) and breast tumor (MCF-7) cell lines with siRNAs targeting both TS and Bcl-2 had unexpected, nonreciprocal antagonistic effects. Two siRNAs targeting different Bcl-2 mRNA sequences reduced the capacity of TS siRNA to reduce TS mRNA and protein, with no evidence of converse effects by TS siRNA on Bcl-2 mRNA or protein. Moreover, treatment of HeLa cells with siRNA targeting Bcl-2 resulted in increased TS mRNA and protein. Pretreatment of HeLa and MCF-7 cells with TS siRNA sensitized cells to TS-targeting drugs, but addition of antagonistic Bcl-2 siRNA to the pretreatment regimen abrogated sensitization. Combined targeting of separate physiological pathways by antisense reagents may be a useful approach in treatment of cancer, but antagonistic interactions could abrogate advantages or reduce effectiveness of other antisense and nonantisense reagents.
Collapse
Affiliation(s)
- Aleksandra A Pandyra
- London Regional Cancer Centre, 790 Commissioners Rd. East, London, ON, Canada N6A 4L6
| | | | | | | |
Collapse
|