1
|
Zhu Z, Reiser G. The small heat shock proteins, especially HspB4 and HspB5 are promising protectants in neurodegenerative diseases. Neurochem Int 2018; 115:69-79. [PMID: 29425965 DOI: 10.1016/j.neuint.2018.02.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 12/13/2022]
Abstract
Small heat shock proteins (sHsps) are a group of proteins with molecular mass between 12 and 43 kDa. Currently, 11 members of this family have been classified, namely HspB1 to HspB11. HspB1, HspB2, HspB5, HspB6, HspB7, and HspB8, which are expressed in brain have been observed to be related to the pathology of neurodegenerative diseases, including Parkinson's, Alzheimer's, Alexander's disease, multiple sclerosis, and human immunodeficiency virus-associated dementia. Specifically, sHsps interact with misfolding and damaging protein aggregates, like Glial fibrillary acidic protein in AxD, β-amyloid peptides aggregates in Alzheimer's disease, Superoxide dismutase 1 in Amyotrophic lateral sclerosis and cytosine-adenine-guanine/polyglutamine (CAG/PolyQ) in Huntington's disease, Spinocerebellar ataxia type 3, Spinal-bulbar muscular atrophy, to reduce the toxicity or increase the clearance of these protein aggregates. The degree of HspB4 expression in brain is still debated. For neuroprotective mechanisms, sHsps attenuate mitochondrial dysfunctions, reduce accumulation of misfolded proteins, block oxidative/nitrosative stress, and minimize neuronal apoptosis and neuroinflammation, which are molecular mechanisms commonly accepted to mirror the progression and development of neurodegenerative diseases. The increasing incidence of the neurodegenerative diseases enhanced search for effective approaches to rescue neural tissue from degeneration with minimal side effects. sHsps have been found to exert neuroprotective functions. HspB5 has been emphasized to reduce the paralysis in a mouse model of experimental autoimmune encephalomyelitis, providing a therapeutic basis for the disease. In this review, we discuss the current understanding of the properties and the mechanisms of protection orchestrated by sHsps in the nervous system, highlighting the promising therapeutic role of sHsps in neurodegenerative diseases.
Collapse
Affiliation(s)
- Zhihui Zhu
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Straße 44, 39120 Magdeburg, Germany; College of Medicine, Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Georg Reiser
- Institut für Inflammation und Neurodegeneration (Neurobiochemie), Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Straße 44, 39120 Magdeburg, Germany.
| |
Collapse
|
2
|
Barthélémy A, Mouchard A, Bouji M, Blazy K, Puigsegur R, Villégier AS. Glial markers and emotional memory in rats following acute cerebral radiofrequency exposures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25343-25355. [PMID: 27696165 DOI: 10.1007/s11356-016-7758-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
The widespread mobile phone use raises concerns on the possible cerebral effects of radiofrequency electromagnetic fields (RF EMF). Reactive astrogliosis was reported in neuroanatomical structures of adaptive behaviors after a single RF EMF exposure at high specific absorption rate (SAR, 6 W/kg). Here, we aimed to assess if neuronal injury and functional impairments were related to high SAR-induced astrogliosis. In addition, the level of beta amyloid 1-40 (Aβ 1-40) peptide was explored as a possible toxicity marker. Sprague Dawley male rats were exposed for 15 min at 0, 1.5, or 6 W/kg or for 45 min at 6 W/kg. Memory, emotionality, and locomotion were tested in the fear conditioning, the elevated plus maze, and the open field. Glial fibrillary acidic protein (GFAP, total and cytosolic fractions), myelin basic protein (MBP), and Aβ1-40 were quantified in six brain areas using enzyme-linked immunosorbent assay. According to our data, total GFAP was increased in the striatum (+114 %) at 1.5 W/kg. Long-term memory was reduced, and cytosolic GFAP was increased in the hippocampus (+119 %) and in the olfactory bulb (+46 %) at 6 W/kg (15 min). No MBP or Aβ1-40 expression modification was shown. Our data corroborates previous studies indicating RF EMF-induced astrogliosis. This study suggests that RF EMF-induced astrogliosis had functional consequences on memory but did not demonstrate that it was secondary to neuronal damage.
Collapse
Affiliation(s)
- Amélie Barthélémy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Institut des Neurosciences Cellulaires et Intégratives, CNRS UPR 3212, 5 rue Blaise Pascal, 67084, Strasbourg, France
| | - Amandine Mouchard
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Institut des Maladies Neurodégénératives CNRS UMR5293 Université de Bordeaux, 146 rue Léo Saignat, 33076, Bordeaux, France
| | - Marc Bouji
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Campus des sciences et technologies, Université Saint-Joseph, Dekwaneh, Mar Roukos, Lebanon
| | - Kelly Blazy
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Unité mixte PERITOX EA 4285-UM INERIS 01 Laboratoire Périnatalité et risques toxicologiques CHU Amiens-Picardie Hôpital, Sud Avenue Laënnec, 80 480, Salouël, France
| | - Renaud Puigsegur
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France
- Sous-direction de la police technique et scientifique, 31 Avenue Franklin Roosevelt, 69130, Ecully, France
| | - Anne-Sophie Villégier
- Institut national de l'environnement industriel et des risques (INERIS), Unité de Toxicologie Expérimentale, Parc Technologique ALATA, BP no. 2, 60550, Verneuil-en-Halatte, France.
- Unité mixte PERITOX EA 4285-UM INERIS 01 Laboratoire Périnatalité et risques toxicologiques CHU Amiens-Picardie Hôpital, Sud Avenue Laënnec, 80 480, Salouël, France.
| |
Collapse
|
3
|
C-terminally truncated form of αB-crystallin is associated with IDH1 R132H mutation in anaplastic astrocytoma. J Neurooncol 2014; 117:53-65. [PMID: 24473683 DOI: 10.1007/s11060-014-1371-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 01/13/2014] [Indexed: 10/25/2022]
Abstract
Malignant gliomas are the most common human primary brain tumors. Point mutation of amino acid arginine 132 to histidine (R132H) in the IDH1 protein leads to an enzymatic gain-of-function and is thought to promote gliomagenesis. Little is known about the downstream effects of the IDH1 mutation on protein expression and how and whether changes in protein expression are involved in tumor formation or propagation. In the current study, we used 2D DIGE (difference gel electrophoresis) and mass spectrometry to analyze differences in protein expression between IDH1(R132H) mutant and wild type anaplastic (grade III) astrocytoma from human brain cancer tissues. We show that expression levels of many proteins are altered in IDH1(R132H) mutant anaplastic astrocytoma. Some of the most over-expressed proteins in the mutants include several forms of αB-crystallin, a small heat-shock and anti-apoptotic protein. αB-crystallin proteins are elevated up to 22-fold in IDH1(R132H) mutant tumors, and αB-crystallin expression appears to be controlled at the post-translational level. We identified the most abundant form of αB-crystallin as a low molecular weight species that is C-terminally truncated. We also found that overexpression of αB-crystallin can be induced by transfecting U251 human glioblastoma cell lines with the IDH1(R132H) mutation. In conclusion, the association of a C-terminally truncated form of αB-crystallin protein with the IDH1(R132H) mutation is a novel finding that could impact apoptosis and stress response in IDH1 mutant glioma.
Collapse
|
4
|
Wang K, Zhang J, Xu Y, Ren K, Xie WL, Yan YE, Zhang BY, Shi Q, Liu Y, Dong XP. Abnormally upregulated αB-crystallin was highly coincidental with the astrogliosis in the brains of scrapie-infected hamsters and human patients with prion diseases. J Mol Neurosci 2013; 51:734-48. [PMID: 23832485 DOI: 10.1007/s12031-013-0057-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/17/2013] [Indexed: 01/22/2023]
Abstract
αB-crystallin is a member of the small heat shock protein family constitutively presenting in brains at a relatively low level. To address the alteration of αB-crystallin in prion disease, the αB-crystallin levels in the brains of scrapie agent 263 K-infected hamsters were analyzed. The levels of αB-crystallin were remarkably increased in the brains of 263 K-infected hamsters, showing a time-dependent manner along with incubation time. Immunohistochemical (IHC) and immunofluorescent (IFA) assays illustrated more αB-crystallin-positive signals in the regions of the cortex and thalamus containing severe astrogliosis. Double-stained IFA verified that the αB-crystallin signals colocalized with the enlarged glial fibrillary acidic protein-positive astrocytes, but not with neuronal nuclei-positive cells. IHC and IFA of the serial brain sections of infected hamsters showed no colocalization and correlation between PrP(Sc) deposits and αB-crystallin increase. Moreover, increased αB-crystallin deposits were observed in the brain sections of parietal lobe of a sporadic Creutzfeldt-Jakob disease (sCJD) case, parietal lobe and thalamus of a G114V genetic CJD case, and thalamus of a fatal family insomnia (FFI) case, but not in a parietal lobe of FFI where only very mild astrogliosis was addressed. Additionally, the molecular interaction between αB-crystallin and PrP was only observed in the reactions of recombinant proteins purified from Escherichia coli, but not either in that of brain homogenates or in that of the cultured cell lysates expressing human PrP and αB-crystallin. Our data indicate that brain αB-crystallin is abnormally upregulated in various prion diseases, which is coincidental with astrogliosis. Direct interaction between αB-crystallin and PrP seems not to be essential during the pathogenesis of prion infection.
Collapse
Affiliation(s)
- Ke Wang
- School of Medicine, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Li R, Zhu Z, Reiser G. Specific phosphorylation of αA-crystallin is required for the αA-crystallin-induced protection of astrocytes against staurosporine and C2-ceramide toxicity. Neurochem Int 2012; 60:652-8. [PMID: 22414529 DOI: 10.1016/j.neuint.2012.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 02/13/2012] [Accepted: 02/24/2012] [Indexed: 12/17/2022]
Abstract
We previously reported that αA-crystallin and protease-activated receptor are involved in protection of astrocytes against C2-ceramide- and staurosporine-induced cell death (Li et al., 2009). Here, we investigated the molecular mechanism of αA-crystallin-mediated cytoprotection. We found that the expression of mutants mimicking specific phosphorylation of αA-crystallin increases the protection of astrocytes. However, the expression of mutants mimicking unphosphorylation of αA-crystallin results in loss of protection. These data revealed that the phosphorylation of αA-crystallin at Ser122 and Ser148 is required for protection. Furthermore, we explored the mechanism of cytoprotection of astrocytes by αA-crystallin. Application of specific inhibitors of p38 and ERK abrogates the protection of astrocytes by over-expression of αA-crystallin. Thus, p38 and ERK contribute to protective processes by αA-crystallin. This is comparable to our previous results which demonstrated that p38 and ERK regulated protease-activated receptor-2 (PAR-2)/αB-crystallin-mediated cytoprotection. Furthermore, we found that PAR-2 activation increases the expression of αA-crystallin. Thus, endogenous αA-crystallin protects astrocytes via mechanisms, which regulate the expression and/or phosphorylation status of αA-crystallin.
Collapse
Affiliation(s)
- Rongyu Li
- Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Medizinische Fakultät, Leipziger Straße 44, 39120 Magdeburg, Germany
| | | | | |
Collapse
|
6
|
Li R, Reiser G. Phosphorylation of Ser45 and Ser59 of αB-crystallin and p38/extracellular regulated kinase activity determine αB-crystallin-mediated protection of rat brain astrocytes from C2-ceramide- and staurosporine-induced cell death. J Neurochem 2011; 118:354-64. [DOI: 10.1111/j.1471-4159.2011.07317.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Intermediate filaments take the heat as stress proteins. Trends Cell Biol 2010; 20:79-91. [PMID: 20045331 DOI: 10.1016/j.tcb.2009.11.004] [Citation(s) in RCA: 199] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2009] [Revised: 11/13/2009] [Accepted: 11/17/2009] [Indexed: 11/18/2022]
Abstract
Intermediate filament (IF) proteins and heat shock proteins (HSPs) are large multimember families that share several features, including protein abundance, significant upregulation in response to a variety of stresses, cytoprotective functions, and the phenocopying of several human diseases after IF protein or HSP mutation. We are now coming to understand that these common elements point to IFs as important cellular stress proteins with some roles akin to those already well-characterized for HSPs. Unique functional roles for IFs include protection from mechanical stress, whereas HSPs are characteristically involved in protein folding and as chaperones. Shared IF and HSP cytoprotective roles include inhibition of apoptosis, organelle homeostasis, and scaffolding. In this report, we review data that corroborate the view that IFs function as highly specialized cytoskeletal stress proteins that promote cellular organization and homeostasis.
Collapse
|
8
|
Li R, Rohatgi T, Hanck T, Reiser G. Alpha A-crystallin and alpha B-crystallin, newly identified interaction proteins of protease-activated receptor-2, rescue astrocytes from C2-ceramide- and staurosporine-induced cell death. J Neurochem 2009; 110:1433-44. [PMID: 19558454 DOI: 10.1111/j.1471-4159.2009.06226.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protease-activated receptor-2 (PAR-2) is a G protein-coupled receptor activated by trypsin and other trypsin-like serine proteases. The widely expressed PAR-2 is involved in inflammation response but the physiological/pathological roles of PAR-2 in the nervous system are still uncertain. In the present study, we report novel PAR-2 interaction proteins, alphaA-crystallin and alphaB-crystallin. These 20 kDa proteins have been implicated in neurodegenerative diseases like Alexander's disease, Creutzfeldt-Jacob disease, Alzheimer's disease, and Parkinson's disease. Results from yeast two-hybrid assay using the cytoplasmic C-tail of PAR-2 as bait suggested that alphaA-crystallin interacts with PAR-2. We further demonstrate the in vitro and cellular in vivo interaction of C-tail of PAR-2 as well as of full-length PAR-2 with alphaA(alphaB)-crystallins. We use pull-down, co-immunoprecipitation, and co-localization assays. Analysis of alphaA-crystallin deletion mutants showed that amino acids 120-130 and 136-154 of alphaA-crystallin are required for the interaction with PAR-2. Co-immunoprecipitation experiments ruled out an interaction of alphaA(alphaB)-crystallins with PAR-1, PAR-3, and PAR-4. This demonstrates that alphaA(alphaB)-crystallins are PAR-2-specific interaction proteins. Moreover, we investigated the functional role of PAR-2 and alpha-crystallins in astrocytes. Evidence is presented to show that PAR-2 activation and increased expression of alpha-crystallins reduced C2-ceramide- and staurosporine-induced cell death in astrocytes. Thus, both PAR-2 and alpha-crystallins are involved in cytoprotection in astrocytes.
Collapse
Affiliation(s)
- Rongyu Li
- Medizinische Fakultät, Institut für Neurobiochemie, Otto-von-Guericke-Universität Magdeburg, Magdeburg 39120, Germany
| | | | | | | |
Collapse
|
9
|
Khanlou N, Mathern GW, Mitchell WG, Salamon N, Pope WB, Yong WH, Vinters HV. Cortical dysplasia with prominent Rosenthal fiber formation in a case of intractable pediatric epilepsy. Hum Pathol 2009; 40:1200-4. [PMID: 19427021 DOI: 10.1016/j.humpath.2009.02.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/08/2009] [Accepted: 02/26/2009] [Indexed: 11/26/2022]
Abstract
We report a case of a 5-year-old boy with intractable epilepsy who underwent therapeutic corticectomy. Histopathologic findings within the resection specimen included severe cortical dysplasia associated with abundant subpial and intraparenchymal Rosenthal fibers in a large right frontal lesion that merged into the basal ganglia. Rosenthal fiber proliferation may represent a reactive process, are frequent in pilocytic astrocytomas, and are a defining feature of Alexander disease. There was no evidence of neoplasm or leukodystrophy in this case. Genetic analysis of the specimen showed a few previously reported polymorphisms but no mutation in the GFAP gene. This case is unique among several hundred cortical resection specimens that we have studied, including numerous cases of severe cortical dysplasia.
Collapse
Affiliation(s)
- Négar Khanlou
- Department of Pathology and Laboratory Medicine (Neuropathology), University of California Los Angeles-David Geffen School of Medicine, Los Angeles, CA 90095-1732, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Cho W, Messing A. Properties of astrocytes cultured from GFAP over-expressing and GFAP mutant mice. Exp Cell Res 2008; 315:1260-72. [PMID: 19146851 DOI: 10.1016/j.yexcr.2008.12.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/12/2008] [Accepted: 12/14/2008] [Indexed: 11/29/2022]
Abstract
Alexander disease is a fatal leukoencephalopathy caused by dominantly-acting coding mutations in GFAP. Previous work has also implicated elevations in absolute levels of GFAP as central to the pathogenesis of the disease. However, identification of the critical astrocyte functions that are compromised by mis-expression of GFAP has not yet been possible. To provide new tools for investigating the nature of astrocyte dysfunction in Alexander disease, we have established primary astrocyte cultures from two mouse models of Alexander disease, a transgenic that over-expresses wild type human GFAP, and a knock-in at the endogenous mouse locus that mimics a common Alexander disease mutation. We find that mutant GFAP, as well as excess wild type GFAP, promotes formation of cytoplasmic inclusions, disrupts the cytoskeleton, decreases cell proliferation, increases cell death, reduces proteasomal function, and compromises astrocyte resistance to stress.
Collapse
Affiliation(s)
- Woosung Cho
- Waisman Center, Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI 53705, USA
| | | |
Collapse
|
11
|
Lennerz JK, Rühle V, Ceppa EP, Neuhuber WL, Bunnett NW, Grady EF, Messlinger K. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: Differences between peripheral and central CGRP receptor distribution. J Comp Neurol 2008; 507:1277-99. [DOI: 10.1002/cne.21607] [Citation(s) in RCA: 249] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|