1
|
Romig M, Eberwein M, Deobald D, Schmid A. Reactivation and long-term stabilization of the [NiFe] Hox hydrogenase of Synechocystis sp. PCC6803 by glutathione after oxygen exposure. J Biol Chem 2025; 301:108086. [PMID: 39675701 PMCID: PMC11780932 DOI: 10.1016/j.jbc.2024.108086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/29/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024] Open
Abstract
Hydrogenases are key enzymes forming or consuming hydrogen. The inactivation of these transition metal biocatalysts with oxygen limits their biotechnological applications. Oxygen-sensitive hydrogenases are distinguished from oxygen-insensitive (tolerant) ones by their initial hydrogen turnover rates influenced by oxygen. Several hydrogenases, such as the oxygen-sensitive bidirectional [NiFe] Hox hydrogenase (Hox) of the unicellular cyanobacterium Synechocystis sp. PCC6803, are reactivated after oxygen-induced deactivation by redox mechanisms. In cyanobacteria, the glutathione (GSH) redox buffer majorly controls intracellular redox potentials. The relationship between Hox turnover rates and the redox potential in its natural reaction environment is not fully understood. We thus determined hydrogen oxidation rates as activities of Hox in cell-free extracts of Synechocystis using benzyl viologen as artificial electron acceptor. We found that GSH modulates Hox hydrogen oxidation rates under oxygen-free conditions. After oxygen exposure, it influences the maximal turnover rate and aids in the reactivation of Hox. Moreover, GSH stabilizes the long-term Hox activity under anoxic conditions and attenuates oxygen-induced deactivation of Hox in a concentration-dependent manner, probably by fostering reactivation. Conversely, oxidized GSH (GSSG) negatively affects Hox activity and oxygen insensitivity. Using Blue Native PAGE followed by mass spectrometry, we showed that oxygen affects Hox complex integrity. The in silico predicted structure of the Hox complex and complexome analyses reveal the formation of various Hox subcomplexes under different conditions. Our findings refine our current classification of oxygen-hydrogenase interactions beyond sensitive and insensitive, which is particularly important for understanding hydrogenase function under physiological conditions in future.
Collapse
Affiliation(s)
- Merle Romig
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany
| | - Marie Eberwein
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany
| | - Darja Deobald
- Department of Molecular Environmental Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany.
| | - Andreas Schmid
- Department of Solar Materials Biotechnology, Helmholtz Centre for Environmental Research - UFZ GmbH, Leipzig, Germany.
| |
Collapse
|
2
|
Thulluru LP, Ghangrekar MM, Chowdhury S. Progress and perspectives on microbial electrosynthesis for valorisation of CO 2 into value-added products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 332:117323. [PMID: 36716542 DOI: 10.1016/j.jenvman.2023.117323] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/06/2023] [Accepted: 01/15/2023] [Indexed: 06/18/2023]
Abstract
Microbial electrosynthesis (MES) is a neoteric technology that facilitates biocatalysed synthesis of organic compounds with the aid of homoacetogenic bacteria, while feeding CO2 as an inorganic carbon source. Operating MES with surplus renewable electricity further enhances the sustainability of this innovative bioelectrochemical system (BES). However, several lacunae exist in the domain knowledge, stunting the widespread application of MES. Despite significant progress in this area over the past decade, the product yield efficiency is not on par with other contemporary technologies. This bottleneck can be overcome by adopting a holistic approach, i.e., applying innovative and integrated solutions to ensure a robust MES operation. Further, the widespread deployment of MES exclusively relies on its ability to mature a sessile biofilm over a biocompatible electrode, while offering minimal charge transfer resistance. Additionally, operating MES preferably at H2-generating reduction potential and valorising industrial off-gas as carbon substrate is crucial to accomplish economic sustainability. In light of the aforementioned, this review collates the latest progress in the design and development of MES-centred systems for valorisation of CO2 into value-added products. Specifically, it highlights the significance of inoculum pre-treatment for promoting biocatalytic activity and biofilm growth on the cathodic surface. In addition, it summarizes the diverse materials that are commonly used as electrodes in MES, with an emphasis on the importance of inexpensive, robust, and biocompatible electrode materials for the practical application of MES technology. Further, the review presents insights into media conditions, operational factors, and reactor configurations that affect the overall performance of MES process. Finally, the product range of MES, downstream processing requirements, and integration of MES with other environmental remediation technologies are also discussed.
Collapse
Affiliation(s)
- Lakshmi Pathi Thulluru
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Makarand M Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India
| | - Shamik Chowdhury
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
3
|
Theoretical Studies of Acetyl-CoA Synthase Catalytic Mechanism. Catalysts 2022. [DOI: 10.3390/catal12020195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
DFT calculations were performed for the A-cluster from the enzyme Acetyl-CoA synthase (ACS). The acid constants (pKa), reduction potentials, and pH-dependent reduction potential for the A-cluster with different oxidation states and ligands were calculated. Good agreement of the reduction potentials, dependent on pH in the experiment, was obtained. On the basis of the calculations, a mechanism for the methylation reaction involving two–electron reduction and protonation on the proximal nickel atom of the reduced A-cluster is proposed.
Collapse
|
4
|
Zhang S, Jiang J, Wang H, Li F, Hua T, Wang W. A review of microbial electrosynthesis applied to carbon dioxide capture and conversion: The basic principles, electrode materials, and bioproducts. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101640] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
5
|
Han YF, Xie BT, Wu GX, Guo YQ, Li DM, Huang ZY. Combination of Trace Metal to Improve Solventogenesis of Clostridium carboxidivorans P7 in Syngas Fermentation. Front Microbiol 2020; 11:577266. [PMID: 33101253 PMCID: PMC7546793 DOI: 10.3389/fmicb.2020.577266] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/04/2020] [Indexed: 11/13/2022] Open
Abstract
Higher alcohols such as butanol (C4 alcohol) and hexanol (C6 alcohol) are superior biofuels compared to ethanol. Clostridium carboxidivorans P7 is a typical acetogen capable of producing C4 and C6 alcohols natively. In this study, the composition of trace metals in culture medium was adjusted, and the effects of these adjustments on artificial syngas fermentation by C. carboxidivorans P7 were investigated. Nickel and ferrous ions were essential for growth and metabolite synthesis during syngas fermentation by P7. However, a decreased dose of molybdate improved alcohol fermentation performance by stimulating carbon fixation and solventogenesis. In response to the modified trace metal composition, cells grew to a maximum OD600 nm of 1.6 and accumulated ethanol and butanol to maximum concentrations of 2.0 and 1.0 g/L, respectively, in serum bottles. These yields were ten-fold higher than the yields generated using the original composition of trace metals. Furthermore, 0.5 g/L of hexanol was detected at the end of fermentation. The results from gene expression experiments examining genes related to carbon fixation and organic acid and solvent synthesis pathways revealed a dramatic up-regulation of the Wood-Ljungdahl pathway (WLP) gene cluster, the bcs gene cluster, and a putative CoA transferase and butanol dehydrogenase, thereby indicating that both de novo synthesis and acid re-assimilation contributed to the significantly elevated accumulation of higher alcohols. The bdh35 gene was speculated to be the key target for butanol synthesis during solventogenesis.
Collapse
Affiliation(s)
- Yi-Fan Han
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Bin-Tao Xie
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Guang-Xun Wu
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Ya-Qiong Guo
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - De-Mao Li
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| | - Zhi-Yong Huang
- Tianjin Key Laboratory for Industrial Biological Systems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,National Technology Innovation Center of Synthetic Biology, Tianjin, China
| |
Collapse
|
6
|
Zhou M, Zhou J, Tan M, Du J, Yan B, Wong JWC, Zhang Y. Enhanced carboxylic acids production by decreasing hydrogen partial pressure during acidogenic fermentation of glucose. BIORESOURCE TECHNOLOGY 2017; 245:44-51. [PMID: 28892705 DOI: 10.1016/j.biortech.2017.08.152] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 05/27/2023]
Abstract
In this study, the effect of reduced hydrogen partial pressure (PH2) on the generation of carboxylic acids from acidogenic fermentation of glucose was investigated. Three strategies were applied to reduce PH2: headspace removal (T1), CO2 sparging (T2) and H2:CO2 (80:20) sparging (T3). Results showed that the production of carboxylic acids in T1-T3 were 10.21, 11.64 and 12.71g/L, respectively, which were 1.04, 1.19 and 1.30-fold of that in the control (T4). The composition of carboxylic acids changed significantly in T3 with enhancement of homoacetogenesis, as more acetate and butyrate were produced comparing to the control. In addition, decreasing PH2 led to more carbon flow to carboxylic acids. Species of Clostridium became dominant in treatment T3, resulting in the shift of metabolic pathways. This study demonstrated that decreasing PH2 could increase the production of carboxylic acids, especially under the strategy of enhancing homoacetogenesis.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing TECH University, Nanjing 211816, China
| | - Ming Tan
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Juan Du
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Binghua Yan
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| | - Jonathan W C Wong
- Sino-Forest Applied Research Centre for Pearl River Delta Environment, Department of Biology, Hong Kong Baptist University, Hong Kong Special Administrative Region
| | - Yang Zhang
- Lab of Waste Valorization and Water Reuse, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| |
Collapse
|
7
|
Zanello P. The competition between chemistry and biology in assembling iron–sulfur derivatives. Molecular structures and electrochemistry. Part V. {[Fe4S4](SCysγ)4} proteins. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2016.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Ammam F, Tremblay PL, Lizak DM, Zhang T. Effect of tungstate on acetate and ethanol production by the electrosynthetic bacterium Sporomusa ovata. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:163. [PMID: 27493685 PMCID: PMC4973070 DOI: 10.1186/s13068-016-0576-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/27/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Microbial electrosynthesis (MES) and gas fermentation are bioenergy technologies in which a microbial catalyst reduces CO2 into organic carbon molecules with electrons from the cathode of a bioelectrochemical system or from gases such as H2. The acetogen Sporomusa ovata has the capacity of reducing CO2 into commodity chemicals by both gas fermentation and MES. Acetate is often the only product generated by S. ovata during autotrophic growth. RESULTS In this study, trace elements in S. ovata growth medium were optimized to improve MES and gas fermentation productivity. Augmenting tungstate concentration resulted in a 2.9-fold increase in ethanol production by S. ovata during H2:CO2-dependent growth. It also promoted electrosynthesis of ethanol in a S. ovata-driven MES reactor and increased acetate production 4.4-fold compared to unmodified medium. Furthermore, fatty acids propionate and butyrate were successfully converted to their corresponding alcohols 1-propanol and 1-butanol by S. ovata during gas fermentation. Increasing tungstate concentration enhanced conversion efficiency for both propionate and butyrate. Gene expression analysis suggested that tungsten-containing aldehyde ferredoxin oxidoreductases (AORs) and a tungsten-containing formate dehydrogenase (FDH) were involved in the improved biosynthesis of acetate, ethanol, 1-propanol, and 1-butanol. AORs and FDH contribute to the fatty acids re-assimilation pathway and the Wood-Ljungdahl pathway, respectively. CONCLUSIONS This study presented here shows that optimization of microbial catalyst growth medium can improve productivity and lead to the biosynthesis of different products by gas fermentation and MES. It also provides insights on the metabolism of biofuels production in acetogens and demonstrates that S. ovata has an important untapped metabolic potential for the production of other chemicals than acetate via CO2-converting bioprocesses including MES.
Collapse
Affiliation(s)
- Fariza Ammam
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Pier-Luc Tremblay
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| | - Dawid M. Lizak
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
| | - Tian Zhang
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2970 Hørsholm, Denmark
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
9
|
Banks CJ, Zhang Y, Jiang Y, Heaven S. Trace element requirements for stable food waste digestion at elevated ammonia concentrations. BIORESOURCE TECHNOLOGY 2012; 104:127-35. [PMID: 22100238 DOI: 10.1016/j.biortech.2011.10.068] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Revised: 10/18/2011] [Accepted: 10/20/2011] [Indexed: 05/18/2023]
Abstract
The work investigated why anaerobic digesters treating food waste and operating at high ammonia concentrations suffer from propionic acid accumulation which may result in process failure. The results showed deficiency of selenium, essential for both propionate oxidation and syntrophic hydrogenotrophic methanogenesis, leads to this while supplementation allows operation at substantially higher organic loading rates (OLR). At high loadings cobalt also becomes limiting, due to its role either in acetate oxidation in a reverse Wood-Ljungdahl or in hydrogenotrophic methanogenesis. Population structure analysis using fluorescent in situ hybridization showed only hydrogenotrophic methanogens. Critical Se and Co concentrations were established as 0.16 and 0.22 mg kg(-1) fresh matter feed at moderate loading. At this dosage the OLR could be raised to 5 g VS l(-1) day(-1) giving specific and volumetric biogas productions of 0.75 m(3) kg(-1) VS(added) and 3.75 STP m(3) m(-3) day(-1), representing a significant increase in process performance and operational stability.
Collapse
Affiliation(s)
- Charles J Banks
- Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK.
| | | | | | | |
Collapse
|
10
|
Zhu X, Gu X, Zhang S, Liu Y, Huang ZX, Tan X. Efficient expression and purification of methyltransferase in acetyl-coenzyme a synthesis pathway of the human pathogen Clostridium difficile. Protein Expr Purif 2011; 78:86-93. [PMID: 21324365 DOI: 10.1016/j.pep.2011.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 02/08/2011] [Accepted: 02/09/2011] [Indexed: 12/18/2022]
Abstract
The Wood-Ljungdahl pathway is responsible for acetyl-CoA biosynthesis and used as a major mean of generating energy for growth in some anaerobic microbes. Series of genes, from the anaerobic human pathogen Clostridium difficile, have been identified that show striking similarity to the genes involved in this pathway including methyltetrahydrofolate- and corrinoid-dependent methyltransferase. This methyltransferase plays a central role in this pathway that transfers the methyl group from methyltetrahydrofolate to a cob(I)amide center in the corrinoid iron-sulfur protein. In this study, we developed two efficient expression and purification methods for methyltransferase from C. difficile for the first time with two expression vectors MBPHT-mCherry2 and pETDuet-1, respectively. Using the latter vector, more than 50mg MeTr was produced per liter Luria-Bertani broth media. The recombinant methyltransferase was well characterized by SDS-PAGE, gel filtration chromatography, enzyme assay and far-UV circular dichroism (CD). Furthermore, a highly effective approach was established for determining the methyl transfer activity of the methyltetrahydrofolate- and cobalamin-dependent methyltransferase using exogenous cobalamin as a substrate by stopped-flow method. These results will provide a solid basis for further study of the methyltransferase and the Wood-Ljungdahl pathway.
Collapse
Affiliation(s)
- Xiaofei Zhu
- Department of Chemistry and Institutes of Biomedical Sciences, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|