1
|
Rubel MS, Zemerova T, Kolpashchikov DM. The outputs of molecular sensors detectable by human senses. Chem Commun (Camb) 2025; 61:3472-3483. [PMID: 39898490 DOI: 10.1039/d4cc06384h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Molecular sensors respond to the presence of biological analytes by producing signals that are either directly perceivable by human sensory systems or converted into electric signals, which require electronic devices for communicating the signals to humans. Here, we review the outputs of molecular sensors detectable directly by human senses. According to the literature, sensors with visual outputs dominate. Undeservedly unnoticed, sensors that release gases might be particularly useful since the gas output can be detected with the several human senses in a quantifiable format. Relatively new sensors with tactile outputs can be accessed by visually impaired people. Molecular sensors communicating their outputs directly to human senses bypassing electronic devices may contribute to the development of point-of-care testing technologies, as well as providing the direct communication of molecular nanorobots with humans.
Collapse
Affiliation(s)
- Maria S Rubel
- Laboratory of DNA-nanosensoric Diagnostic, ChemBio Cluster, ITMO University, Saint Petersburg 191002, Russia
- Amyloid Biology Laboratory, St. Petersburg State University, St. Petersburg, 199034, Russia
| | - Tatiana Zemerova
- Laboratory of DNA-nanosensoric Diagnostic, ChemBio Cluster, ITMO University, Saint Petersburg 191002, Russia
| | - Dmitry M Kolpashchikov
- Chemistry Department, University of Central Florida, Orlando, FL 32816-2366, USA.
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
2
|
Wang W, Peng Y, Wu J, Zhang M, Li Q, Zhao Z, Liu M, Wang J, Cao G, Bai J, Gao Z. Ultrasensitive Detection of 17β-Estradiol (E2) Based on Multistep Isothermal Amplification. Anal Chem 2021; 93:4488-4496. [PMID: 33651609 DOI: 10.1021/acs.analchem.0c04681] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
17β-Estradiol (E2) can cause an adverse effect on the human endocrine system even at the nanomolar level. Measurements of very low levels of E2 remain a critical challenge due to insufficient sensitivity. In this study, a multistep isothermal amplification fluorescence strategy was constructed, which could realize the exponential amplification of target E2. Specifically, strand displacement reaction (SDA), rolling circle amplification (RCA), and multiprimed rolling circle amplification (MRCA) were combined in a series to quantify trace complementary strand of E2 (cDNA). The E2 aptamer and cDNA were hybridized and modified on the magnetic beads. E2 could bind to its aptamer and cause the release of the cDNA. Then, cDNA would combine with the template DNA, initiating the SDA-RCA-MRCA. The molecular beacons, possessing low background signal, whose fluorescence was quenched in the state of chain folding, could be specifically recognized by the long single-stranded DNA (L-ssDNA) generated by the multistep isothermal amplification triggered by cDNA, and then the fluorescence of the molecular beacons could be restored. Therefore, the E2 could be quantitatively detected by the recovery fluorescence intensity. The fluorescence value showed a good linear relationship with the concentration of E2 in the range of 0.001836-183.6 nM, and the limit of detection (LOD) was as low as 63.09 fM. In addition, the recovery rates of this method spiked in milk and water were 80.8-107.0%, respectively. This method has the advantage of multistep isothermal amplification to obtain abundant fluorescence signals, which may provide a new possibility for highly sensitive detection of other small-molecule targets.
Collapse
Affiliation(s)
- Weiya Wang
- Department of Public Health and Management, Binzhou Medical University, Yantai 264003, People's Republic of China.,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Yuan Peng
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Jin Wu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Man Zhang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Qiaofeng Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Zunquan Zhao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Mingzhu Liu
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Jiu Wang
- Department of Public Health and Management, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Gaofang Cao
- Department of Public Health and Management, Binzhou Medical University, Yantai 264003, People's Republic of China
| | - Jialei Bai
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| | - Zhixian Gao
- Department of Public Health and Management, Binzhou Medical University, Yantai 264003, People's Republic of China.,Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, People's Republic of China
| |
Collapse
|
3
|
Bidar N, Amini M, Oroojalian F, Baradaran B, Hosseini SS, Shahbazi MA, Hashemzaei M, Mokhtarzadeh A, Hamblin MR, de la Guardia M. Molecular beacon strategies for sensing purpose. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116143] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
6
|
Song G, Zhu X. Development of Science China Chemistry during 2008–2012: From the perspective of Special Issues/Topics. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4804-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|