1
|
Lian H, He S, Chen C, Yan X. Flow Cytometric Analysis of Nanoscale Biological Particles and Organelles. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:389-409. [PMID: 30978294 DOI: 10.1146/annurev-anchem-061318-115042] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Analysis of nanoscale biological particles and organelles (BPOs) at the single-particle level is fundamental to the in-depth study of biosciences. Flow cytometry is a versatile technique that has been well-established for the analysis of eukaryotic cells, yet conventional flow cytometry can hardly meet the sensitivity requirement for nanoscale BPOs. Recent advances in high-sensitivity flow cytometry have made it possible to conduct precise, sensitive, and specific analyses of nanoscale BPOs, with exceptional benefits for bacteria, mitochondria, viruses, and extracellular vesicles (EVs). In this article, we discuss the significance, challenges, and efforts toward sensitivity enhancement, followed by the introduction of flow cytometric analysis of nanoscale BPOs. With the development of the nano-flow cytometer that can detect single viruses and EVs as small as 27 nm and 40 nm, respectively, more exciting applications in nanoscale BPO analysis can be envisioned.
Collapse
Affiliation(s)
| | | | - Chaoxiang Chen
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| | - Xiaomei Yan
- MOE Key Laboratory of Spectrochemical Analysis and Instrumentation; Key Laboratory for Chemical Biology of Fujian Province; Collaborative Innovation Center of Chemistry for Energy Material; and Department of Chemical Biology, College of Chemistry and Engineering, Xiamen University, Xiamen, Fujian 361005, China;
| |
Collapse
|
2
|
|
3
|
|
4
|
Rademeyer P, Carugo D, Lee JY, Stride E. Microfluidic system for high throughput characterisation of echogenic particles. LAB ON A CHIP 2015; 15:417-428. [PMID: 25367757 DOI: 10.1039/c4lc01206b] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Echogenic particles, such as microbubbles and volatile liquid micro/nano droplets, have shown considerable potential in a variety of clinical diagnostic and therapeutic applications. The accurate prediction of their response to ultrasound excitation is however extremely challenging, and this has hindered the optimisation of techniques such as quantitative ultrasound imaging and targeted drug delivery. Existing characterisation techniques, such as ultra-high speed microscopy provide important insights, but suffer from a number of limitations; most significantly difficulty in obtaining large data sets suitable for statistical analysis and the need to physically constrain the particles, thereby altering their dynamics. Here a microfluidic system is presented that overcomes these challenges to enable the measurement of single echogenic particle response to ultrasound excitation. A co-axial flow focusing device is used to direct a continuous stream of unconstrained particles through the combined focal region of an ultrasound transducer and a laser. Both the optical and acoustic scatter from individual particles are then simultaneously recorded. Calibration of the device and example results for different types of echogenic particle are presented, demonstrating a high throughput of up to 20 particles per second and the ability to resolve changes in particle radius down to 0.1 μm with an uncertainty of less than 3%.
Collapse
Affiliation(s)
- Paul Rademeyer
- Institute of Biomedical Engineering, University of Oxford, Old Road Campus Research Building, Oxford OX3 7DQ, UK.
| | | | | | | |
Collapse
|
5
|
Batchelor-McAuley C, Ellison J, Tschulik K, Hurst PL, Boldt R, Compton RG. In situ nanoparticle sizing with zeptomole sensitivity. Analyst 2015; 140:5048-54. [DOI: 10.1039/c5an00474h] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We present the basis for an entirely new approach to in situ nanoparticle sizing of very small nanoparticles containing only 12 zeptomoles of silver via in situ particle coulometry.
Collapse
Affiliation(s)
| | - Joanna Ellison
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QZ
- UK
| | - Kristina Tschulik
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QZ
- UK
| | - Philip L. Hurst
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QZ
- UK
| | - Regine Boldt
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Richard G. Compton
- Department of Chemistry
- Physical and Theoretical Chemistry Laboratory
- University of Oxford
- Oxford OX1 3QZ
- UK
| |
Collapse
|
6
|
Zhu S, Ma L, Wang S, Chen C, Zhang W, Yang L, Hang W, Nolan JP, Wu L, Yan X. Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles. ACS NANO 2014; 8:10998-1006. [PMID: 25300001 PMCID: PMC4212780 DOI: 10.1021/nn505162u] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Ultrasensitive detection and characterization of single nanoparticles (<100 nm) is important in nanotechnology and life sciences. Direct measurement of the elastically scattered light from individual nanoparticles represents the simplest and the most direct method for particle detection. However, the sixth-power dependence of scattering intensity on particle size renders very small particles indistinguishable from the background. Adopting strategies for single-molecule fluorescence detection in a sheathed flow, here we report the development of high sensitivity flow cytometry (HSFCM) that achieves real-time light-scattering detection of single silica and gold nanoparticles as small as 24 and 7 nm in diameter, respectively. This unprecedented sensitivity enables high-resolution sizing of single nanoparticles directly based on their scattered intensity. With a resolution comparable to that of TEM and the ease and speed of flow cytometric analysis, HSFCM is particularly suitable for nanoparticle size distribution analysis of polydisperse/heterogeneous/mixed samples. Through concurrent fluorescence detection, simultaneous insights into the size and payload variations of engineered nanoparticles are demonstrated with two forms of clinical nanomedicine. By offering quantitative multiparameter analysis of single nanoparticles in liquid suspensions at a throughput of up to 10 000 particles per minute, HSFCM represents a major advance both in light-scattering detection technology and in nanoparticle characterization.
Collapse
Affiliation(s)
- Shaobin Zhu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Ling Ma
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Shuo Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Chaoxiang Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Wenqiang Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Lingling Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Wei Hang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - John P. Nolan
- The Scintillon Institute, 6404 Nancy Ridge Drive, San Diego, California 92121, United States
| | - Lina Wu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Xiaomei Yan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
- Address correspondence to
| |
Collapse
|
7
|
High-throughput single-cell analysis of low copy number β-galactosidase by a laboratory-built high-sensitivity flow cytometer. Biosens Bioelectron 2013; 48:49-55. [DOI: 10.1016/j.bios.2013.03.078] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 01/05/2023]
|
8
|
Song G, Zhu X. Development of Science China Chemistry during 2008–2012: From the perspective of Special Issues/Topics. Sci China Chem 2012. [DOI: 10.1007/s11426-012-4804-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Zhang S, Zhu S, Yang L, Zheng Y, Gao M, Wang S, Zeng JZ, Yan X. High-Throughput Multiparameter Analysis of Individual Mitochondria. Anal Chem 2012; 84:6421-8. [DOI: 10.1021/ac301464x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Shuyue Zhang
- The Key Laboratory
of Analytical Science, The Key Laboratory for Chemical Biology of
Fujian Province, Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Shaobin Zhu
- The Key Laboratory
of Analytical Science, The Key Laboratory for Chemical Biology of
Fujian Province, Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Lingling Yang
- The Key Laboratory
of Analytical Science, The Key Laboratory for Chemical Biology of
Fujian Province, Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Yan Zheng
- The Key Laboratory
of Analytical Science, The Key Laboratory for Chemical Biology of
Fujian Province, Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Min Gao
- The Key Laboratory
of Analytical Science, The Key Laboratory for Chemical Biology of
Fujian Province, Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Shuo Wang
- The Key Laboratory
of Analytical Science, The Key Laboratory for Chemical Biology of
Fujian Province, Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| | - Jin-zhang Zeng
- School of Pharmaceutical
Sciences and Institute for Biomedical Research, Xiamen University, People’s Republic of China
| | - Xiaomei Yan
- The Key Laboratory
of Analytical Science, The Key Laboratory for Chemical Biology of
Fujian Province, Department of Chemical Biology, College of Chemistry
and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, People’s Republic of China
| |
Collapse
|
10
|
Yang L, Zhou Y, Zhu S, Huang T, Wu L, Yan X. Detection and Quantification of Bacterial Autofluorescence at the Single-Cell Level by a Laboratory-Built High-Sensitivity Flow Cytometer. Anal Chem 2012; 84:1526-32. [DOI: 10.1021/ac2031332] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Lingling Yang
- The Key Laboratory
of Analytical Science, The Key Laboratory
for Chemical Biology of Fujian Province, Department of Chemical Biology,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen Fujian 361005, China
| | - Yingxing Zhou
- The Key Laboratory
of Analytical Science, The Key Laboratory
for Chemical Biology of Fujian Province, Department of Chemical Biology,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen Fujian 361005, China
| | - Shaobin Zhu
- The Key Laboratory
of Analytical Science, The Key Laboratory
for Chemical Biology of Fujian Province, Department of Chemical Biology,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen Fujian 361005, China
| | - Tianxun Huang
- The Key Laboratory
of Analytical Science, The Key Laboratory
for Chemical Biology of Fujian Province, Department of Chemical Biology,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen Fujian 361005, China
| | - Lina Wu
- The Key Laboratory
of Analytical Science, The Key Laboratory
for Chemical Biology of Fujian Province, Department of Chemical Biology,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen Fujian 361005, China
| | - Xiaomei Yan
- The Key Laboratory
of Analytical Science, The Key Laboratory
for Chemical Biology of Fujian Province, Department of Chemical Biology,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen Fujian 361005, China
| |
Collapse
|