1
|
Lu X, Zhang SL, Zhou CH. Identification of hydroxyphenyl cyanovinyl thiazoles as new structural scaffold of potential antibacterial agents. Bioorg Med Chem Lett 2025; 124:130258. [PMID: 40288698 DOI: 10.1016/j.bmcl.2025.130258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/15/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
Unique hydroxyphenyl cyanovinyl thiazoles (HCTs) as new structural scaffolds of potential antibacterial agents were developed to overcome global increasingly serious drug resistance. Some synthesized HCTs could suppress the growth of the tested strains, especially, benzothiophenyl HCT 5c exhibited superior anti-Escherichia coli activity with a lower MIC of 0.5 μg/mL to norfloxacin (MIC = 1 μg/mL). The active benzothiophenyl HCT 5c displayed no obvious hemolysis, low cytotoxicity and a much lower trend for the development of drug-resistance than norfloxacin. Further exploration revealed that benzothiophenyl HCT 5c could intercalate to DNA to form a DNA-5c complex, which disturbed the biological functions to facilitate bacterial death. ADME analysis indicated that compound 5c possessed favorable druggability and promising pharmacokinetic properties. This work provided an insight into further developing hydroxyphenyl cyanovinyl thiazoles as new structural scaffold of promising antibacterial candidates.
Collapse
Affiliation(s)
- Xing Lu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing 401331, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
2
|
Zang ZL, Gao WW, Zhou CH. Unique aminothiazolyl coumarins as potential DNA and membrane disruptors towards Enterococcus faecalis. Bioorg Chem 2024; 148:107451. [PMID: 38759357 DOI: 10.1016/j.bioorg.2024.107451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/19/2024]
Abstract
Aminothiazolyl coumarins as potentially new antimicrobial agents were designed and synthesized in an effort to overcome drug resistance. Biological activity assay revealed that some target compounds exhibited significantly inhibitory efficiencies toward bacteria and fungi including drug-resistant pathogens. Especially, aminothiazolyl 7-propyl coumarin 8b and 4-dichlorobenzyl derivative 11b exhibited bactericidal potential (MBC/MIC = 2) toward clinically drug-resistant Enterococcus faecalis with low cytotoxicity to human lung adenocarcinoma A549 cells, rapidly bactericidal effects and no obvious bacterial resistance development against E. faecalis. The preliminary antibacterial action mechanism studies suggested that compound 11b was able to disturb E. faecalis membrane effectively, and interact with bacterial DNA isolated from resistant E. faecalis through noncovalent bonds to cleave DNA, thus inhibiting the growth of E. faecalis strain. Further molecular modeling indicated that compounds 8b and 11b could bind with SER-1084 and ASP-1083 residues of gyrase-DNA complex through hydrogen bonds and hydrophobic interactions. Moreover, compound 11b showed low hemolysis and in vivo toxicity. These findings of aminothiazolyl coumarins as unique structural scaffolds might hold a large promise for the treatments of drug-resistant bacterial infection.
Collapse
Affiliation(s)
- Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Wei-Wei Gao
- State Key Laboratory Base of Eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
3
|
Zhao JS, Ahmad N, Li S, Zhou CH. Hydrazyl hydroxycoumarins as new potential conquerors towards Pseudomonas aeruginosa. Bioorg Med Chem Lett 2024; 103:129709. [PMID: 38494040 DOI: 10.1016/j.bmcl.2024.129709] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
A class of unique hydrazyl hydroxycoumarins (HHs) as novel structural scaffold was developed to combat dreadful bacterial infections. Some HHs could effectively suppress bacterial growth at low concentrations, especially, pyridyl HH 7 exhibited a good inhibition against Pseudomonas aeruginosa 27853 with a low MIC value of 0.5 μg/mL, which was 8-fold more active than norfloxacin. Furthermore, pyridyl HH 7 with low hemolytic activity and low cytotoxicity towards NCM460 cells showed much lower trend to induce the drug-resistant development than norfloxacin. Preliminarily mechanism exploration indicated that pyridyl HH 7 could eradicate the integrity of bacterial membrane, result in the leakage of intracellular proteins, and interact with bacterial DNA gyrase via non-covalent binding, and ADME analysis manifested that compound 7 gave good pharmacokinetic properties. These results suggested that the newly developed hydrazyl hydroxycoumarins as potential multitargeting antibacterial agents should be worthy of further investigation for combating bacterial infection.
Collapse
Affiliation(s)
- Jiang-Sheng Zhao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nisar Ahmad
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Shuo Li
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
4
|
Rana N, Grover P, Singh H. Recent Developments and Future Perspectives of Purine Derivatives as a Promising Scaffold in Drug Discovery. Curr Top Med Chem 2024; 24:541-579. [PMID: 38288806 DOI: 10.2174/0115680266290152240110074034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/17/2023] [Accepted: 12/27/2023] [Indexed: 05/31/2024]
Abstract
Numerous purine-containing compounds have undergone extensive investigation for their medical efficacy across various diseases. The swift progress in purine-based medicinal chemistry has brought to light the therapeutic capabilities of purine-derived compounds in addressing challenging medical conditions. Defined by a heterocyclic ring comprising a pyrimidine ring linked with an imidazole ring, purine exhibits a diverse array of therapeutic attributes. This review systematically addresses the multifaceted potential of purine derivatives in combating various diseases, including their roles as anticancer agents, antiviral compounds (anti-herpes, anti-HIV, and anti-influenzae), autoimmune and anti-inflammatory agents, antihyperuricemic and anti-gout solutions, antimicrobial agents, antitubercular compounds, anti-leishmanial agents, and anticonvulsants. Emphasis is placed on the remarkable progress made in developing purine-based compounds, elucidating their significant target sites. The article provides a comprehensive exploration of developments in both natural and synthetic purines, offering insights into their role in managing a diverse range of illnesses. Additionally, the discussion delves into the structure-activity relationships and biological activities of the most promising purine molecules. The intriguing capabilities revealed by these purine-based scaffolds unequivocally position them at the forefront of drug candidate development. As such, this review holds potential significance for researchers actively involved in synthesizing purine-based drug candidates, providing a roadmap for the continued advancement of this promising field.
Collapse
Affiliation(s)
- Neha Rana
- School of Pharmacy (SOP), Noida International University, Yamuna Expressway, Gautam Budh Nagar, 203201, India
| | - Parul Grover
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, India
| | - Hridayanand Singh
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, 201204, Uttar Pradesh, India
| |
Collapse
|
5
|
Li SR, Tan YM, Zhang L, Zhou CH. Comprehensive Insights into Medicinal Research on Imidazole-Based Supramolecular Complexes. Pharmaceutics 2023; 15:1348. [PMID: 37242590 PMCID: PMC10222694 DOI: 10.3390/pharmaceutics15051348] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
The electron-rich five-membered aromatic aza-heterocyclic imidazole, which contains two nitrogen atoms, is an important functional fragment widely present in a large number of biomolecules and medicinal drugs; its unique structure is beneficial to easily bind with various inorganic or organic ions and molecules through noncovalent interactions to form a variety of supramolecular complexes with broad medicinal potential, which is being paid an increasing amount of attention regarding more and more contributions to imidazole-based supramolecular complexes for possible medicinal application. This work gives systematical and comprehensive insights into medicinal research on imidazole-based supramolecular complexes, including anticancer, antibacterial, antifungal, antiparasitic, antidiabetic, antihypertensive, and anti-inflammatory aspects as well as ion receptors, imaging agents, and pathologic probes. The new trend of the foreseeable research in the near future toward imidazole-based supramolecular medicinal chemistry is also prospected. It is hoped that this work provides beneficial help for the rational design of imidazole-based drug molecules and supramolecular medicinal agents and more effective diagnostic agents and pathological probes.
Collapse
Affiliation(s)
- Shu-Rui Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yi-Min Tan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ling Zhang
- School of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Zeng C, Avula SR, Meng J, Zhou C. Synthesis and Biological Evaluation of Piperazine Hybridized Coumarin Indolylcyanoenones with Antibacterial Potential. Molecules 2023; 28:molecules28062511. [PMID: 36985486 PMCID: PMC10056909 DOI: 10.3390/molecules28062511] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/24/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
A class of piperazine hybridized coumarin indolylcyanoenones was exploited as new structural antibacterial frameworks to combat intractable bacterial resistance. Bioactive assessment discovered that 4-chlorobenzyl derivative 11f showed a prominent inhibition on Pseudomonas aeruginosa ATCC 27853 with a low MIC of 1 μg/mL, which was four-fold more effective than norfloxacin. Importantly, the highly active 11f with inconspicuous hemolysis towards human red blood cells displayed quite low proneness to trigger bacterial resistance. Preliminary explorations on its antibacterial behavior disclosed that 11f possessed the ability to destroy bacterial cell membrane, leading to increased permeability of inner and outer membranes, the depolarization and fracture of membrane, and the effusion of intracellular components. Furthermore, bacterial oxidative stress and metabolic turbulence aroused by 11f also accelerated bacterial apoptosis. In particular, 11f could not only effectively inset into DNA, but also bind with DNA gyrase through forming supramolecular complex, thereby affecting the biological function of DNA. The above findings of new piperazine hybridized coumarin indolylcyanoenones provided an inspired possibility for the treatment of resistant bacterial infections.
Collapse
Affiliation(s)
- Chunmei Zeng
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Srinivasa Rao Avula
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiangping Meng
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China
- Correspondence: (J.M.); (C.Z.)
| | - Chenghe Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
- Correspondence: (J.M.); (C.Z.)
| |
Collapse
|
7
|
Yang XC, Zeng CM, Avula SR, Peng XM, Geng RX, Zhou CH. Novel coumarin aminophosphonates as potential multitargeting antibacterial agents against Staphylococcus aureus. Eur J Med Chem 2023; 245:114891. [DOI: 10.1016/j.ejmech.2022.114891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/20/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
8
|
Synthesis of 2,4‐dihydrochromeno[3,4‐
d
][1,2,3]triazoles and 5‐(2
H
‐chromen‐3‐yl)‐1
H
‐tetrazoles via regioselective 1,3‐dipolar cycloaddition of 2
H
‐chromene‐3‐carbonitriles with NaN
3. ChemistrySelect 2022. [DOI: 10.1002/slct.202204197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Ragab A, Abusaif MS, Aboul-Magd DS, Wassel MMS, Elhagali GAM, Ammar YA. A new exploration toward adamantane derivatives as potential anti-MDR agents: Design, synthesis, antimicrobial, and radiosterilization activity as potential topoisomerase IV and DNA gyrase inhibitors. Drug Dev Res 2022; 83:1305-1330. [PMID: 35716118 DOI: 10.1002/ddr.21960] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/29/2022] [Indexed: 12/16/2022]
Abstract
Developing novel antimicrobial agents has become a necessitate due to the increasing rate of microbial resistance to antibiotics. All the newly adamantane derivatives were evaluated for their antimicrobial activities against six MDR clinical pathogenic isolates. The results exhibited that 13 compounds have from potent to good activity. Among those, five derivatives (6, 7, 9, 14a, and 14b) displayed the potent activities against the different isolates tested (MIC < 0.25 µg/ml with bacteria and <8 µg/ml with fungi) compared with Ciprofloxacin (CIP) and Fluconazole (FCA). Additionally, the potent adamantanes showed bactericidal and fungicidal effects based on (MBCs and MFCs) and the time-kill assay. The most active adamantane derivatives 7 and 14b exhibited a synergistic effect of ΣFIC ≤ 0.5 with CIP and FCA against the bacterial and fungal isolates. Moreover, no antagonistic effect appeared for the tested derivatives. Additionally, the interaction of DNA gyrase and topoisomerase IV enzymes with the compounds 6, 7, 9, 14a, and 14b exhibited potent antimicrobial activity using in vitro biochemical assays and gel-based DNA-supercoiling inhibition method. The activity of DNA gyrase and topoisomerase IV enzymes showed inhibitory activity (IC50 ) of 6.20 µM and 9.40 µM with compound 7 and 10.14 µM and 13.28 µM with compound 14b, respectively. Surprisingly, exposing compound 7 to gamma irradiation sterilized and increased its activity. Finally, the in-silico analysis predicted that the most active derivatives had good drug-likeness and safe properties. Besides, molecular docking and quantum chemical studies revealed several important interactions inside the active sites and showed the structural features necessary for activity.
Collapse
Affiliation(s)
- Ahmed Ragab
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Moustafa S Abusaif
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority, Egypt
| | - Mohammed M S Wassel
- Department of Foot and Mouth Disease, Veterinary Serum and Vaccine Research Institute, Abbasia, Cairo, Egypt
| | - Gameel A M Elhagali
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Yousry A Ammar
- Department of Chemistry, Faculty of Science (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| |
Collapse
|
10
|
Cheke RS, Patel HM, Patil VM, Ansari IA, Ambhore JP, Shinde SD, Kadri A, Snoussi M, Adnan M, Kharkar PS, Pasupuleti VR, Deshmukh PK. Molecular Insights into Coumarin Analogues as Antimicrobial Agents: Recent Developments in Drug Discovery. Antibiotics (Basel) 2022; 11:566. [PMID: 35625210 PMCID: PMC9137837 DOI: 10.3390/antibiotics11050566] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
A major global health risk has been witnessed with the development of drug-resistant bacteria and multidrug-resistant pathogens linked to significant mortality. Coumarins are heterocyclic compounds belonging to the benzophenone class enriched in different plants. Coumarins and their derivatives have a wide range of biological activity, including antibacterial, anticoagulant, antioxidant, anti-inflammatory, antiviral, antitumour, and enzyme inhibitory effects. In the past few years, attempts have been reported towards the optimization, synthesis, and evaluation of novel coumarin analogues as antimicrobial agents. Several coumarin-based antibiotic hybrids have been developed, and the majority of them were reported to exhibit potential antibacterial effects. In the present work, studies reported from 2016 to 2020 about antimicrobial coumarin analogues are the focus. The diverse biological spectrum of coumarins can be attributed to their free radical scavenging abilities. In addition to various synthetic strategies developed, some of the structural features include a heterocyclic ring with electron-withdrawing/donating groups conjugated with the coumarin nucleus. The suggested structure-activity relationship (SAR) can provide insight into how coumarin hybrids can be rationally improved against multidrug-resistant bacteria. The present work demonstrates molecular insights for coumarin derivatives having antimicrobial properties from the recent past. The detailed SAR outcomes will benefit towards leading optimization during the discovery and development of novel antimicrobial therapeutics.
Collapse
Affiliation(s)
- Rameshwar S. Cheke
- Department of Pharmaceutical Chemistry, Dr. Rajendra Gode College of Pharmacy, Malkapur 443101, India;
| | - Harun M. Patel
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India; (H.M.P.); (I.A.A.)
| | - Vaishali M. Patil
- Department of Pharmaceutical Chemistry, KIET School of Pharmacy, KIET Groups of Institutions, Delhi-NCR, Delhi 201206, India
| | - Iqrar Ahmad Ansari
- Department of Pharmaceutical Chemistry, R. C. Patel Institute of Pharmaceutical Education and Research, Shirpur 425405, India; (H.M.P.); (I.A.A.)
| | - Jaya P. Ambhore
- Department of Pharmaceutical Chemistry, Dr. Rajendra Gode College of Pharmacy, Malkapur 443101, India;
| | - Sachin D. Shinde
- Department of Pharmacology, Shri. R. D. Bhakt College of Pharmacy, Jalna 431213, India;
| | - Adel Kadri
- Faculty of Science of Sfax, Department of Chemistry, University of Sfax, B.P. 1171, Sfax 3000, Tunisia;
- Department of Pharmaceutical Chemistry, Faculty of Science and Arts in Baljurashi, Albaha University, P.O. Box 1988, Albaha 65527, Saudi Arabia
| | - Mejdi Snoussi
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.S.); (M.A.)
- Laboratory of Genetics, Biodiversity and Valorization of Bio-Resources (LR11ES41), University of Monastir, Higher Institute of Biotechnology of Monastir, Avenue Tahar Haddad, BP74, Monastir 5000, Tunisia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Hail, Hail P.O. Box 2440, Saudi Arabia; (M.S.); (M.A.)
| | - Prashant S. Kharkar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai 400019, India;
| | - Visweswara Rao Pasupuleti
- Department of Biomedical Sciences and Therapeutics, Faculty of Medicine & Health Sciences, University Malaysia Sabah, Kota Kinabalu 44800, Malaysia
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Abdurrab University, Pekanbaru 28291, Indonesia
- Centre for International Collaboration and Research, Reva University, Rukmini Knowledge Park, Kattigenahalli, Yelahanka, Bangalore, Karnataka 560064, India
| | - Prashant K. Deshmukh
- Department of Pharmaceutics, Dr. Rajendra Gode College of pharmacy, Malkapur 443101, India;
| |
Collapse
|
11
|
Yang XC, Zhang PL, Kumar KV, Li S, Geng RX, Zhou CH. Discovery of unique thiazolidinone-conjugated coumarins as novel broad spectrum antibacterial agents. Eur J Med Chem 2022; 232:114192. [DOI: 10.1016/j.ejmech.2022.114192] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/28/2022] [Accepted: 02/07/2022] [Indexed: 01/06/2023]
|
12
|
Hu Y, Zhang L, Huang J, Wang T, Zhang J, Yu C, Pan G, Zhang L, Zhu Z, Zhang J. Novel Schiff Base‐conjugated
para
‐Aminobenzenesulfonamide Indole Hybrids as Potentially Muti‐targeting Blockers against
Staphylococcus aureus. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yuanyuan Hu
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Ling Zhang
- School of Science Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Jinxu Huang
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Tiansheng Wang
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Jichuan Zhang
- Department of Chemistry University of Idaho Moscow Idaho 83844-2324 USA
| | - Congwei Yu
- College of Science China Agricultural University Beijing 100193 P. R. China
| | - Guangxing Pan
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Ling Zhang
- School of Chemical Technology Shijiazhuang University Shijiazhuang Hebei 050035 P. R. China
| | - Zhenye Zhu
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials Harbin Institute of Technology (Shenzhen) Shenzhen 518055 P. R. China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology School of Materials Science and Engineering Harbin Institute of Technology Shenzhen 518055 P. R. China
| |
Collapse
|
13
|
Sun H, Huang SY, Jeyakkumar P, Cai GX, Fang B, Zhou CH. Natural Berberine-derived Azolyl Ethanols as New Structural Antibacterial Agents against Drug-Resistant Escherichia coli. J Med Chem 2021; 65:436-459. [PMID: 34964345 DOI: 10.1021/acs.jmedchem.1c01592] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Natural berberine-derived azolyl ethanols as new structural antibacterial agents were designed and synthesized for fighting with dreadful bacterial resistance. Partial target molecules exhibited potent activity against the tested strains, particularly, nitroimidazole derivative 4d and benzothiazole-2-thoil compound 18b, with low cytotoxicity both exerted strong antibacterial activities against multidrug-resistant Escherichia coli at low concentrations as 0.007 and 0.006 mM, respectively. Meanwhile, the active compounds 4d and 18b possessed the ability to rapidly kill bacteria and observably eradicate the E. coli biofilm by reducing exopolysaccharide content to prevent bacterial adhesion, which was conducive to alleviating the development of E. coli resistance. Preliminary mechanistic explorations suggested that the excellent antibacterial potential of molecules 4d and 18b might be attributed to their ability to disintegrate membrane, accelerate ROS accumulation, reduce bacterial metabolism, and intercalate into DNA groove. These results provided powerful information for the further exploitation of natural berberine derivatives against bacterial pathogens.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Shi-Yu Huang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ponmani Jeyakkumar
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Bo Fang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
14
|
Bheemanaboina RRY, Wang J, Hu YY, Meng JP, Guan Z, Zhou CH. A facile reaction to access novel structural sulfonyl-hybridized imidazolyl ethanols as potential DNA-targeting antibacterial agents. Bioorg Med Chem Lett 2021; 47:128198. [PMID: 34119615 DOI: 10.1016/j.bmcl.2021.128198] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022]
Abstract
A novel type of sulfonyl-hybridized imidazolyl ethanols as potential DNA-targeting antibacterial agents was constructed via the unique ring-opened reaction of oxiranes by imidazoles for the first time. Some developed target hybrids showed potential antimicrobial potency against the tested microbes. Especially, imidazole derivative 5f could strongly suppressed the growth of MRSA (MIC = 4 μg/mL), which was 2-fold and 16-fold more potent than the positive control sulfathiazole and norfloxacin. This compound exhibited quite low propensity to induce bacterial resistance. Antibacterial mechanism exploration indicated that compound 5f could embed in MRSA DNA to form steady 5f-DNA complex, which possibly hinder DNA replication to exert antimicrobial behavior. Molecular docking showed that molecule 5f could bind with dihydrofolate synthetase through hydrogen bonds. These results implied that imidazole derivative 5f could be served as a promising molecule for the exploration of novel antibacterial candidates.
Collapse
Affiliation(s)
- Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuan-Yuan Hu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiang-Ping Meng
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, College of Pharmacy, Chongqing University of Arts and Sciences, Chongqing 402160, China.
| | - Zhi Guan
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| |
Collapse
|
15
|
Synthesis, antimalarial and antioxidant activity of coumarin appended 1,4-disubstituted 1,2,3-triazoles. MONATSHEFTE FUR CHEMIE 2021. [DOI: 10.1007/s00706-021-02821-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Wang J, Ansari MF, Lin J, Zhou C. Design and Synthesis of Sulfanilamide Aminophosphonates as Novel Antibacterial Agents towards
Escherichia coli. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100165] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| | - Jian‐Mei Lin
- School of Medicine University of Electronic Science and Technology of China Chengdu Sichuan 610072 China
| | - Cheng‐He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 China
| |
Collapse
|
17
|
Hu Y, Hu S, Pan G, Wu D, Wang T, Yu C, Fawad Ansari M, Yadav Bheemanaboina RR, Cheng Y, Bai L, Zhou C, Zhang J. Potential antibacterial ethanol-bridged purine azole hybrids as dual-targeting inhibitors of MRSA. Bioorg Chem 2021; 114:105096. [PMID: 34147878 DOI: 10.1016/j.bioorg.2021.105096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/04/2021] [Accepted: 06/10/2021] [Indexed: 11/30/2022]
Abstract
A new class of antibacterial ethanol-bridged purine azole hybrids as potential dual-targeting inhibitors was developed. Bioactivity evaluation showed that some of the target compounds had prominent antibacterial activity against the tested bacteria, notably, metronidazole hybrid 3a displayed significant inhibitory activity against MRSA (MIC = 6 μM), and had no obvious toxicity on normal mammalian cells (RAW 264.7). In addition, compound 3a also did not induce drug resistance of MRSA obviously, even after fifteen passages. Molecular modeling studies showed that the highly active molecule 3a could insert into the base pairs of topoisomerase IA-DNA as well as topoisomerase IV-DNA through hydrogen bonding. Furthermore, a preliminary study on the antibacterial mechanism revealed that the active molecule 3a could rupture the bacterial membrane of MRSA and insert into MRSA DNA to block its replication, thus possibly exhibiting strong antibacterial activity. These results strongly indicated that the highly active hybrid 3a could be used as a potential dual-targeting inhibitor of MRSA for further development of valuable antimicrobials.
Collapse
Affiliation(s)
- Yuanyuan Hu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Shunyou Hu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Guangxing Pan
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Dong Wu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Tiansheng Wang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Congwei Yu
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China
| | - Mohammad Fawad Ansari
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rammohan R Yadav Bheemanaboina
- Sokol Institute for Pharmaceutical Life Sciences, Department of Chemistry and Biochemistry, Montclair State University, New Jersey 07043, USA
| | - Yu Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Ligang Bai
- School of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, Hubei, China
| | - Chenghe Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China.
| | - Jiaheng Zhang
- Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055 China.
| |
Collapse
|
18
|
Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2021; 222:113628. [PMID: 34139627 DOI: 10.1016/j.ejmech.2021.113628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
The increasing resistance of methicillin-resistant Staphylococcus aureus (MRSA) to antibiotics has led to a growing effort to design and synthesize novel structural candidates of chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids with outstanding bacteriostatic potential. Bioactivity screening showed that hybrid 5i, which was modified with methoxybenzene, exerted a significant inhibitory activity against MRSA (MIC = 0.004 mM), which was 6 times better than the anti-MRSA activity of the reference drug norfloxacin (MIC = 0.025 mM). Compound 5i neither conferred apparent resistance onto MRSA strains even after multiple passages nor triggered evident toxicity to human hepatocyte LO2 cells and normal mammalian cells (RAW 264.7). Molecular docking showed that highly active molecule 5i might bind to DNA gyrase by forming stable hydrogen bonds. In addition, molecular electrostatic potential surfaces were developed to explain the high antibacterial activity of the target compounds. Furthermore, preliminary mechanism studies suggested that hybrid 5i could disrupt the bacterial membrane of MRSA and insert itself into MRSA DNA to impede its replication, thus possibly becoming a potential antibacterial repressor against MRSA.
Collapse
|
19
|
Upadhyay HC. Coumarin-1,2,3-triazole Hybrid Molecules: An Emerging Scaffold for Combating Drug Resistance. Curr Top Med Chem 2021; 21:737-752. [PMID: 33655863 DOI: 10.2174/1568026621666210303145759] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 11/22/2022]
Abstract
Undoubtedly, antibiotics have saved billions of lives, but lack of novel antibiotics, development of resistance mechanisms in almost all clinical isolates of bacteria, and recurrent infections caused by persistent bacteria hamper the successful treatment of the infections. Due to the widespread emergence of resistance, even the new families of anti-microbial agents have a short life expectancy. Drugs acting on a single target often lead to drug resistance and are associated with various side effects. For overcoming this problem, either multidrug therapy, or a single drug acting on multiple targets may be used. The latter is called 'hybrid molecules,' which are formed by clubbing two biologically active pharmacophores together, with or without an appropriate linker. In this rapidly evolving era, the development of natural product-based hybrid molecules may be a super-alternative to multidrug therapy, for combating drug resistance caused by various bacterial and fungal strains. Coumarins (benzopyran-2-one) are one of the earliest reported plant secondary metabolites having a clinically proven diverse range of pharmacological properties. On the other hand, 1,2,3-triazole is a common pharmacophore in many drugs responsible for polar interactions, improving the solubility and binding affinity to biomolecular targets. In this review, we discuss recent advances in Coumarin-1,2,3-triazole hybrids as potential anti-bacterial agents, aiming to provide a useful platform for the exploration of new leads with a broader spectrum, more effectiveness and less toxicity with multiple modes of action for the development of cost-effective and safer drugs in the future.
Collapse
Affiliation(s)
- Harish C Upadhyay
- Laboratory of Chemistry, Department of Applied Sciences, Rajkiya Engineering College (Affiliated to Dr. A.P.J. Abdul Kalam Technical University, Lucknow), Churk, Sonbhadra-231206, India
| |
Collapse
|
20
|
Chen JP, Battini N, Ansari MF, Zhou CH. Membrane active 7-thiazoxime quinolones as novel DNA binding agents to decrease the genes expression and exert potent anti-methicillin-resistant Staphylococcus aureus activity. Eur J Med Chem 2021; 217:113340. [PMID: 33725630 DOI: 10.1016/j.ejmech.2021.113340] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022]
Abstract
A novel class of 7-thiazoxime quinolones was developed as potential antimicrobial agents for the sake of bypassing resistance of quinolones. Biological assays revealed that some constructed 7-thiazoxime quinolones possessed effective antibacterial efficiency. Methyl acetate oxime derivative 6l exhibited 32-fold more active than ciprofloxacin against MRSA, which also possessed rapidly bactericidal ability and low toxicity towards mammalian cells. The combination use of 7-thiazoxime quinolone 6l and ciprofloxacin was able to improve antibacterial potency and effectively alleviate bacterial resistance. The preliminarily mechanism exploration revealed that compound 6l could destroy the cell membrane and insert into MRSA DNA to bind with DNA gyrase, then decrease the expression of gyrB and femB genes. The above results strongly suggested that methyl acetate oxime derivative 6l held a promise for combating MRSA infection.
Collapse
Affiliation(s)
- Jin-Ping Chen
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
21
|
Hu Y, Pan G, Yang Z, Li T, Wang J, Ansari MF, Hu C, Yadav Bheemanaboina RR, Cheng Y, Zhou C, Zhang J. Novel Schiff base-bridged multi-component sulfonamide imidazole hybrids as potentially highly selective DNA-targeting membrane active repressors against methicillin-resistant Staphylococcus aureus. Bioorg Chem 2020; 107:104575. [PMID: 33385978 DOI: 10.1016/j.bioorg.2020.104575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 01/12/2023]
Abstract
A new type of Schiff base-bridged multi-component sulfonamide imidazole hybrids with antimicrobial potential was developed. Some target compounds showed significant antibacterial potency. Observably, butylene hybrids 4h exhibited remarkable inhibitory efficacy against clinical MRSA (MIC = 1 µg/mL), but had no significant toxic effect on normal mammalian cells (RAW 264.7). The highly active molecule 4h was revealed by molecular modeling study that it could insert into the base-pairs of DNA hexamer duplex and bind with the ASN-62 residue of human carbonic anhydrase isozyme II through hydrogen bonding. Furthermore, further preliminary antibacterial mechanism experiments confirmed that compound 4h could effectively interfere with MRSA membrane and insert into bacterial DNA isolated from clinical MRSA strains through non-covalent bonding to produce a supramolecular complex, thus exerting its strong antibacterial efficacy by impeding DNA replication. These findings strongly implied that the highly active hybrid 4h could be used as a potential DNA-targeting template for the development of valuable antimicrobial agent.
Collapse
Affiliation(s)
- Yuanyuan Hu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Guangxing Pan
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhixiong Yang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Tiejun Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Juan Wang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Mohammad Fawad Ansari
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chunfang Hu
- Dongguan School Affiliated to South China Normal University, Dongguan 523755, China
| | - Rammohan R Yadav Bheemanaboina
- Sokol Institute for Pharmaceutical Life Sciences, Department of Chemistry and Biochemistry, Montclair State University, NJ 07043, USA
| | - Yu Cheng
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Chenghe Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Shenzhen 518055, China; Research Centre of Printed Flexible Electronics, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.
| |
Collapse
|
22
|
Rossi R, Ciofalo M. An Updated Review on the Synthesis and Antibacterial Activity of Molecular Hybrids and Conjugates Bearing Imidazole Moiety. Molecules 2020; 25:molecules25215133. [PMID: 33158247 PMCID: PMC7663458 DOI: 10.3390/molecules25215133] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/28/2023] Open
Abstract
The rapid growth of serious infections caused by antibiotic resistant bacteria, especially the nosocomial ESKAPE pathogens, has been acknowledged by Governments and scientists and is one of the world's major health problems. Various strategies have been and are currently investigated and developed to reduce and/or delay the bacterial resistance. One of these strategies regards the design and development of antimicrobial hybrids and conjugates. This unprecedented critical review, in which our continuing interest in the synthesis and evaluation of the bioactivity of imidazole derivatives is testified, aims to summarise and comment on the results obtained from the end of the 1900s until February 2020 in studies conducted by numerous international research groups on the synthesis and evaluation of the antibacterial properties of imidazole-based molecular hybrids and conjugates in which the pharmacophoric constituents of these compounds are directly covalently linked or connected through a linker or spacer. In this review, significant attention was paid to summarise the strategies used to overcome the antibiotic resistance of pathogens whose infections are difficult to treat with conventional antibiotics. However, it does not include literature data on the synthesis and evaluation of the bioactivity of hybrids and conjugates in which an imidazole moiety is fused with a carbo- or heterocyclic subunit.
Collapse
Affiliation(s)
- Renzo Rossi
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Via G. Moruzzi, 3, I-56124 Pisa, Italy
- Correspondence: (R.R.); (M.C.)
| | - Maurizio Ciofalo
- Dipartimento di Scienze Agrarie, Alimentari e Forestali, University of Palermo, Viale delle Scienze, Edificio 4, I-90128 Palermo, Italy
- Correspondence: (R.R.); (M.C.)
| |
Collapse
|
23
|
Dabade SJ, Mandloi D, Bajaj A. Molecular Docking and QSAR Studies of Coumarin Derivatives as NMT Inhibitors: Simple Structural Features as Potential Modulators of Antifungal Activity. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180817999200617105711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Background:
Treatments of fungal diseases, including Candidiasis, remain not up to
scratch in spite of the mounting catalog of synthetic antifungal agents. These have served as the
impetus for investigating new antifungal agents based on natural products. Consequently, genetic
algorithm-multiple linear regression (GA-MLR) based QSAR (Quantitative Structure-Activity Relationship)
studies of coumarin analogues along with molecular docking were carried out.
Methods:
Coumarin analogues with their MIC values were used to generate the training and test
sets of compounds for QSAR models development; the analogues were also docked into the binding
pocket of NMT (MyristoylCoA: protein N-myristoyltransferase).
Results and Discussion:
The statistical parameters for internal and external validation of QSAR
analysis (R2 = 0.830, Q2 = 0.758, R2Pred = 0.610 and R2m overall = 0.683 ), Y Randomization, Ridge
trace, VIF, tolerance and model criteria of Golbraikh and Tropsha data illustrate the robustness of
the best proposed QSAR model. Most of the analogues bind to the electrostatic, hydrophobic
clamp and display hydrogen bonding with amino acid residues of NMT. Interestingly, the most
active coumarin analogue (MolDock score of -189.257) was docked deeply within the binding
pocket of NMT, thereby displaying hydrogen bonding with Tyr107, Leu451, Leu450, Gln226,
Cys393 and Leu394 amino acid residues.
Conclusion:
The combinations of descriptors from various descriptor subsets in QSAR analysis
have highlighted the role of atomic properties such as polarizability and atomic van der Waals volume
to explain the inhibitory activity. The models and related information may pave the way for
important insight into the designing of putative NMT inhibitors for Candida albicans.
Collapse
Affiliation(s)
- Sapna Jain Dabade
- Department of Applied Science, SAGE University, Indore & Research Scholar at School of Chemical Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Dheeraj Mandloi
- Institute of Engineering and Technology, Devi Ahilya Vishwavidyalaya, Indore, India
| | - Amritlal Bajaj
- School of Chemical Sciences, Devi Ahilya Vishwavidyalaya, Indore, India
| |
Collapse
|
24
|
An unexpected discovery toward novel membrane active sulfonyl thiazoles as potential MRSA DNA intercalators. Future Med Chem 2020; 12:1709-1727. [DOI: 10.4155/fmc-2019-0303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: With the increasing emergence of drug-resistant bacteria, the need for new antimicrobial agents has become extremely urgent. This work was to develop sulfonyl thiazoles as potential antibacterial agents. Results & methodology: Novel hybrids of sulfonyl thiazoles were developed from commercial acetanilide and acetylthiazole. Hybrids 6e and 6f displayed excellent inhibitory efficacy against clinical methicillin-resistant Staphylococcus aureus (MRSA) (minimum inhibitory concentration = 1 μg/ml) without obvious toxicity toward normal mammalian cells (RAW 264.7). The combination uses were found to improve the antimicrobial ability. Further preliminary antibacterial mechanism experiments showed that the active molecule 6f could effectively interfere with MRSA membrane and insert into MRSA DNA. Conclusion: Compounds 6e and 6f could serve as potential DNA-targeting templates toward the development of promising antimicrobial agents.
Collapse
|
25
|
Ge X, Xu Z. 1,2,4-Triazole hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch Pharm (Weinheim) 2020; 354:e2000223. [PMID: 32985011 DOI: 10.1002/ardp.202000223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/03/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has developed numerous mechanisms of virulence and strategies to evade the human immune system, and it can be transmitted between humans, animals, and the environment. Thus, MRSA is an important cause of morbidity and mortality in both hospitals and in the community, creating an urgent demand for the development of novel anti-MRSA candidates. The 1,2,4-triazole nucleus is a bioisostere of amide, ester, and carboxylic acid, and the 1,2,4-triazole ring is found in many compounds with diverse biological effects. 1,2,4-Triazole derivatives could exert their antibacterial activity through inhibition of efflux pumps, filamentous temperature-sensitive protein Z, penicillin-binding protein, DNA gyrase, and topoisomerase IV, and they play an important role in the discovery of novel antibacterial agents. Among them, 1,2,4-triazole hybrids, which have the potential to exert dual/multiple mechanisms of action, possess a promising broad-spectrum antibacterial activity against a panel of clinically important drug-resistant pathogens including MRSA. This review outlines the recent developments of 1,2,4-triazole hybrids with a potential anti-MRSA activity, covering articles published between 2010 and 2020. The mechanisms of action, critical aspects of their design, and structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhi Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
26
|
Overview on developed synthesis procedures of coumarin heterocycles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2020. [DOI: 10.1007/s13738-020-01984-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
AbstractConsidering highly valuable biological and pharmaceutical properties of coumarins, the synthesis of these heterocycles has been considered for many organic and pharmaceutical chemists. This review includes the recent research in synthesis methods of coumarin systems, investigating their biological properties and describing the literature reports for the period of 2016 to the middle of 2020. In this review, we have classified the contents based on co-groups of coumarin ring. These reported methods are carried out in the classical and non-classical conditions particularly under green condition such as using green solvent, catalyst and other procedures.
Collapse
|
27
|
Feng D, Zhang A, Yang Y, Yang P. Coumarin-containing hybrids and their antibacterial activities. Arch Pharm (Weinheim) 2020; 353:e1900380. [PMID: 32253782 DOI: 10.1002/ardp.201900380] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/09/2020] [Accepted: 03/17/2020] [Indexed: 12/31/2022]
Abstract
Infections caused by Gram-positive and -negative bacteria are one of the foremost causes of morbidity and mortality globally. Antibiotics are the mainstay of therapy for bacterial infections, but the emergence and wide spread of drug-resistant pathogens have already become a huge issue for public healthcare systems. The coumarin moiety, which is ubiquitous in nature, could bind to the B subunit of DNA gyrase in bacteria and inhibit DNA supercoiling by blocking the ATPase activity; hence, coumarin derivatives possess potential antibacterial activity. Several coumarin-containing hybrids such as coumermycin A1, clorobiocin, and novobiocin have already been used in clinical practice for the treatment of various bacterial infections; thus, it is conceivable that hybridization of the coumarin moiety with other antibacterial pharmacophores may provide opportunities for the development of novel antibiotics. This review outlines the advances in coumarin-containing hybrids with antibacterial potential in the recent 5 years and the structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Dongxu Feng
- Department of Disinfection Center, Zhuji Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China
| | - Yuan Yang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, Guizhou, China.,Dong Medicine Key Laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| | - Peng Yang
- Dong Medicine Key Laboratory of Hunan Province, Department of Laboratory Medicine, Hunan University of Medicine, Huaihua, Hunan, China
| |
Collapse
|
28
|
Kıpçak F, Tok TT, Duyar H, Seferoğlu Z, Gökoğlu E. Synthesis of new morpholine containing 3-amido-9-ethylcarbazole derivative and studies on its biophysical interactions with calf thymus DNA/HSA. J Biomol Struct Dyn 2020; 39:1561-1571. [PMID: 32093548 DOI: 10.1080/07391102.2020.1734093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In this work, we presented the synthesis and investigation of binding properties of the new morpholine containing 3-amido-9-ethylcarbazole derivative (CMR) to calf thymus DNA (ctDNA) and human serum albumin (HSA) by fluorescence spectroscopy, UV absorption spectroscopy and molecular docking method. A decrease in Stern-Volmer constants was obtained with increase in temperature; it shows that static quenching mechanism leads to formation of new CMR-DNA/HSA complexes, which have hydrophobic interaction as the predominant role in the binding modes. Also, binding properties of DNA were investigated with competition assays on two probes (EB and H33258) by absorption, ionic strength and iodide ion quenching methods. The results suggested that CMR entered into the minor groove binding on the A-T region of DNA. The spectral data further confirmed by molecular docking which elicited that CMR complexes have similar interaction and conformation trends to each target, DNA and HSA. The experimental and computational results show that CMR has been classified as a promising molecule in drug designing of other carbazole derivatives.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fulya Kıpçak
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Tugba Taskın Tok
- Department of Chemistry, Gaziantep University, Gaziantep, Turkey.,Department of Bioinformatics and Computational Biology, Gaziantep University, Gaziantep, Turkey
| | - Halil Duyar
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey.,Department of Chemistry, Gazi University, Ankara, Turkey
| | | | - Elmas Gökoğlu
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| |
Collapse
|
29
|
Auti PS, George G, Paul AT. Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Adv 2020; 10:41353-41392. [PMID: 35516563 PMCID: PMC9057921 DOI: 10.1039/d0ra06642g] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022] Open
Abstract
Due to the pharmacological activities of quinazoline and quinazolinone scaffolds, it has aroused great interest in medicinal chemists for the development of new drugs or drug candidates. The pharmacological activities of quinazoline and its related scaffolds include anti-cancer, anti-microbial, anti-convulsant, and antihyperlipidaemia. Recently, molecular hybridization technology is used for the development of hybrid analogues with improved potency by combining two or more pharmacophores of bioactive scaffolds. The molecular hybridization of various biologically active pharmacophores with quinazoline derivatives resulted in lead compounds with multi-faceted biological activity wherein specific as well as multiple targets were involved. The present review summarizes the advances in lead compounds of quinazoline hybrids and their related heterocycles in medicinal chemistry. Moreover, the review also helps to intensify the drug development process by providing an understanding of the potential role of these hybridized pharmacophoric features in exhibiting various pharmacological activities. Recent advances in quinazoline/quinazolinone hybrid heterocycles in medicinal chemistry and their pharmacological diversification.![]()
Collapse
Affiliation(s)
- Prashant S. Auti
- Laboratory of Natural Product Chemistry
- Department of Pharmacy
- Birla Institute of Technology and Science, Pilani (BITS Pilani)
- Pilani Campus
- India
| | - Ginson George
- Laboratory of Natural Product Chemistry
- Department of Pharmacy
- Birla Institute of Technology and Science, Pilani (BITS Pilani)
- Pilani Campus
- India
| | - Atish T. Paul
- Laboratory of Natural Product Chemistry
- Department of Pharmacy
- Birla Institute of Technology and Science, Pilani (BITS Pilani)
- Pilani Campus
- India
| |
Collapse
|
30
|
Hu CF, Zhang PL, Sui YF, Lv JS, Ansari MF, Battini N, Li S, Zhou CH, Geng RX. Ethylenic conjugated coumarin thiazolidinediones as new efficient antimicrobial modulators against clinical methicillin-resistant Staphylococcus aureus. Bioorg Chem 2020; 94:103434. [DOI: 10.1016/j.bioorg.2019.103434] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/18/2022]
|
31
|
Gao F, Xiao J, Huang G. Current scenario of tetrazole hybrids for antibacterial activity. Eur J Med Chem 2019; 184:111744. [DOI: 10.1016/j.ejmech.2019.111744] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/05/2019] [Accepted: 09/26/2019] [Indexed: 12/18/2022]
|
32
|
|
33
|
Wang SQ, Wang YF, Xu Z. Tetrazole hybrids and their antifungal activities. Eur J Med Chem 2019; 170:225-234. [DOI: 10.1016/j.ejmech.2019.03.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023]
|
34
|
Wang LL, Battini N, Bheemanaboina RRY, Zhang SL, Zhou CH. Design and synthesis of aminothiazolyl norfloxacin analogues as potential antimicrobial agents and their biological evaluation. Eur J Med Chem 2019; 167:105-123. [PMID: 30769240 DOI: 10.1016/j.ejmech.2019.01.072] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
A series of aminothiazolyl norfloxacin analogues as a new type of potential antimicrobial agents were synthesized and screened for their antimicrobial activities. Most of the prepared compounds exhibited excellent inhibitory efficiencies. Especially, norfloxacin analogue II-c displayed superior antimicrobial activities against K. pneumoniae and C. albicans with MIC values of 0.005 and 0.010 mM to reference drugs, respectively. This compound not only showed broad antimicrobial spectrum, rapid bactericidal efficacy and strong enzymes inhibitory potency including DNA gyrase and chitin synthase (CHS), low toxicity against mammalian cells and no obvious propensity to trigger the development of bacterial resistance, but also exerted efficient membrane permeability, and could effectively intercalate into K. pneumoniae DNA to form a steady supramolecular complex, which might block DNA replication to exhibit their powerful antimicrobial activity. Quantum chemical studies were also performed to explain the high antimicrobial activities. Molecular docking showed that compound II-c could bind with gyrase-DNA and topoisomerase IV-DNA through hydrogen bonds and π-π stacking.
Collapse
Affiliation(s)
- Liang-Liang Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, PR China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
35
|
Hu YY, Yadav Bheemanaboina RR, Battini N, Zhou CH. Sulfonamide-Derived Four-Component Molecular Hybrids as Novel DNA-Targeting Membrane Active Potentiators against Clinical Escherichia coli. Mol Pharm 2019; 16:1036-1052. [DOI: 10.1021/acs.molpharmaceut.8b01021] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan-Yuan Hu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rammohan R. Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
36
|
Sun H, Ansari MF, Battini N, Bheemanaboina RRY, Zhou CH. Novel potential artificial MRSA DNA intercalators: synthesis and biological evaluation of berberine-derived thiazolidinediones. Org Chem Front 2019. [DOI: 10.1039/c8qo01180j] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel berberine-derived thiazolidinediones as potential artificial DNA intercalators were synthesized, and the preliminary mechanism suggested that active compound 6b could intercalate into MRSA DNA.
Collapse
Affiliation(s)
- Hang Sun
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Rammohan R. Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
37
|
Li D, Bheemanaboina RRY, Battini N, Tangadanchu VKR, Fang XF, Zhou CH. Novel organophosphorus aminopyrimidines as unique structural DNA-targeting membrane active inhibitors towards drug-resistant methicillin-resistant Staphylococcus aureus. MEDCHEMCOMM 2018; 9:1529-1537. [PMID: 30288226 DOI: 10.1039/c8md00301g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022]
Abstract
A series of novel unique structural organophosphorus aminopyrimidines were developed as potential DNA-targeting membrane active inhibitors through an efficient one-pot procedure from aldehydes, phosphonate and aminopyrimidine. The biological assay revealed that some of the prepared compounds displayed antibacterial activities. In particular, imidazole derivative 2c exhibited more potent inhibitory activity against MRSA with an MIC value of 4 μg mL-1 in comparison with the clinical drugs chloromycin and norfloxacin. Experiments revealed that the active molecule 2c had the ability to rapidly kill the tested strains without obviously triggering the development of bacterial resistance, showed low toxicity to L929 cells and could disturb the cell membrane. The molecular docking study discovered that compound 2c could bind with DNA gyrase via hydrogen bonds and other weak interactions. Further exploration disclosed that the active molecule 2c could also effectively intercalate into MRSA DNA and form a steady 2c-DNA supramolecular complex, which might further block DNA replication to exert powerful antibacterial effects.
Collapse
Affiliation(s)
- Di Li
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Xian-Fu Fang
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| |
Collapse
|
38
|
Novel naphthalimide nitroimidazoles as multitargeting antibacterial agents against resistant Acinetobacter baumannii. Future Med Chem 2018; 10:711-724. [DOI: 10.4155/fmc-2017-0160] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: The increasing emergence of resistant bacteria imposed an urgent request to discover novel antibacterial agents. This work was to develop naphthalimide nitroimidazoles as potentially antibacterial agents. Results/methodology: Compound 9e showed the strong antibacterial activity (minimal inhibitory concentration = 0.013 μmol/ml) against resistant Acinetobacter baumannii (A. baumannii) with rapid killing effect and no obvious triggering of the development of resistance. Its combination use with chloromycin, norfloxacin or clinafloxacin improved the antibacterial potency. It could not only effectively permeate membrane of resistant A. baumannii bacteria, but also intercalate into resistant A. baumannii DNA to form 9e–DNA complex. The interaction with bacterial DNA gyrase B was driven by hydrogen bonds. Conclusion: Compound 9e should be a potentially multitargeting antibacterial agent against resistant A. baumannii.
Collapse
|
39
|
Discovery of 2-aminothiazolyl berberine derivatives as effectively antibacterial agents toward clinically drug-resistant Gram-negative Acinetobacter baumanii. Eur J Med Chem 2018; 146:15-37. [DOI: 10.1016/j.ejmech.2018.01.038] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 01/01/2023]
|
40
|
Novel aminopyrimidinyl benzimidazoles as potentially antimicrobial agents: Design, synthesis and biological evaluation. Eur J Med Chem 2018; 143:66-84. [DOI: 10.1016/j.ejmech.2017.11.027] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/26/2017] [Accepted: 11/08/2017] [Indexed: 11/24/2022]
|
41
|
Zhang GB, Maddili SK, Tangadanchu VKR, Gopala L, Gao WW, Cai GX, Zhou CH. Discovery of natural berberine-derived nitroimidazoles as potentially multi-targeting agents against drug-resistant Escherichia coli. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9169-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Li ZZ, Gopala L, Tangadanchu VKR, Gao WW, Zhou CH. Discovery of novel nitroimidazole enols as Pseudomonas aeruginosa DNA cleavage agents. Bioorg Med Chem 2017; 25:6511-6522. [DOI: 10.1016/j.bmc.2017.10.028] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022]
|
43
|
|
44
|
Aydıner B, Yalçın E, Korkmaz V, Seferoğlu Z. Efficient one-pot three-component method for the synthesis of highly fluorescent coumarin-containing 3,5-disubstituted-2,6-dicyanoaniline derivatives under microwave irradiation. SYNTHETIC COMMUN 2017. [DOI: 10.1080/00397911.2017.1362438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Burcu Aydıner
- Department of Chemistry, Faculty of Science, Gazi University, Teknikokullar, Ankara, Turkey
| | - Ergin Yalçın
- Department of Chemistry, Faculty of Science, Gazi University, Teknikokullar, Ankara, Turkey
| | - Vildan Korkmaz
- Department of Chemistry, Faculty of Science, Gazi University, Teknikokullar, Ankara, Turkey
| | - Zeynel Seferoğlu
- Department of Chemistry, Faculty of Science, Gazi University, Teknikokullar, Ankara, Turkey
| |
Collapse
|
45
|
Aksungur T, Aydıner B, Seferoğlu N, Özkütük M, Arslan L, Reis Y, Açık L, Seferoğlu Z. Coumarin-indole conjugate donor-acceptor system: Synthesis, photophysical properties, anion sensing ability, theoretical and biological activity studies of two coumarin-indole based push-pull dyes. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.079] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
46
|
Fang XF, Li D, Tangadanchu VKR, Gopala L, Gao WW, Zhou CH. Novel potentially antifungal hybrids of 5-flucytosine and fluconazole: Design, synthesis and bioactive evaluation. Bioorg Med Chem Lett 2017; 27:4964-4969. [PMID: 29050784 DOI: 10.1016/j.bmcl.2017.10.020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 10/18/2022]
Abstract
A series of novel potentially antifungal hybrids of 5-flucytosine and fluconazole were designed, synthesized and characterized by 1H NMR, 13C NMR, IR and HRMS spectra. Bioactive assay manifested that some prepared compounds showed moderate to good antifungal activities in comparison with fluconazole and 5-flucytosine. Remarkably, the 3,4-dichlorobenzyl hybrid 7h could inhibit the growth of C. albicans ATCC 90023 and clinical resistant strain C. albicans with MIC values of 0.008 and 0.02 mM, respectively. The active molecule 7h could not only rapidly kill C. albicans but also efficiently permeate membrane of C. albicans. Molecular docking study revealed that compound 7h could interact with the active site of CACYP51 through hydrogen bond. Quantum chemical studies were also performed to explain the high antifungal activity. Further preliminary mechanism research suggested that molecule 7h could intercalate into calf thymus DNA to form a steady supramolecular complex, which might block DNA replication to exert the powerful bioactivities.
Collapse
Affiliation(s)
- Xian-Fu Fang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Di Li
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Lavanya Gopala
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Wei-Wei Gao
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
47
|
Zhang Y, Damu GLV, Cui SF, Mi JL, Tangadanchu VKR, Zhou CH. Discovery of potential antifungal triazoles: design, synthesis, biological evaluation, and preliminary antifungal mechanism exploration. MEDCHEMCOMM 2017; 8:1631-1639. [PMID: 30108874 PMCID: PMC6071786 DOI: 10.1039/c7md00112f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 06/09/2017] [Indexed: 01/06/2023]
Abstract
A series of triazoles as miconazole analogues was designed, synthesized and characterized by IR, NMR, MS and HRMS. All the newly prepared compounds were screened for their antifungal activities against five kinds of fungi. The bioactive assay showed that most of the synthesized compounds exhibited good or even stronger antifungal activities in comparison with the reference drugs miconazole and fluconazole. In particular, the 3,4-dichlorobenzyl derivative 5b showed a comparable or superior activity against all the tested fungal strains to standard drugs, and formed a supramolecular complex with CYP51 via the hydrogen bond between the 4-nitrogen of the triazole nucleus and the histidine residue. Preliminary experiments revealed that both of the active molecules 5b and 9c could intercalate into calf thymus DNAs, which might block DNA replication to exhibit their powerful antifungal abilities. Further studies indicated that compound 5b might be stored and transported by human serum albumin through hydrophobic interactions, specific electrostatic interactions and hydrogen bonds. These results strongly suggested that compound 5b could serve as a promising antifungal candidate.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Guri L V Damu
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Sheng-Feng Cui
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Jia-Li Mi
- People's Hospital of Suining , Sichuan 629000 , PR China
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| |
Collapse
|
48
|
Kang J, Tangadanchu VKR, Gopala L, Gao WW, Cheng Y, Liu HB, Geng RX, Li S, Zhou CH. Novel potentially antibacterial naphthalimide-derived metronidazoles: Design, synthesis, biological evaluation and supramolecular interactions with DNA, human serum albumin and topoisomerase II. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.04.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Design, synthesis and biological evaluation of amino organophosphorus imidazoles as a new type of potential antimicrobial agents. Sci China Chem 2017. [DOI: 10.1007/s11426-016-9009-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
50
|
Novel benzimidazolyl tetrahydroprotoberberines: Design, synthesis, antimicrobial evaluation and multi-targeting exploration. Bioorg Med Chem Lett 2017; 27:1737-1743. [DOI: 10.1016/j.bmcl.2017.02.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/20/2017] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
|