1
|
Yang Y, Yang J, Fang M, Li Z. Recent Process of Photo-responsive Materials with Aggregation-induced Emission. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1034-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
2
|
Grover G, Weiss RG. Luminescent Behavior of Gels and Sols Comprised of Molecular Gelators. Gels 2021; 7:19. [PMID: 33671130 PMCID: PMC8005951 DOI: 10.3390/gels7010019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/08/2021] [Accepted: 02/11/2021] [Indexed: 12/05/2022] Open
Abstract
We present a brief review of some important conceptual and practical aspects for the design and properties of molecular luminescent gelators and their gels. Topics considered include structural and dynamic aspects of the gels, including factors important to their ability to emit radiation from electronically excited states.
Collapse
Affiliation(s)
| | - Richard G. Weiss
- Department of Chemistry, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC 20057, USA;
| |
Collapse
|
3
|
Cheng Q, Hao A, Xing P. Stimulus-responsive luminescent hydrogels: Design and applications. Adv Colloid Interface Sci 2020; 286:102301. [PMID: 33160099 DOI: 10.1016/j.cis.2020.102301] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Accepted: 10/25/2020] [Indexed: 11/15/2022]
Abstract
Luminescent hydrogels are emerging soft materials with applications in photoelectric, biomedicine, sensors and actuators, which are fabricated via covalently conjugation of luminophors to hydrogelators or physical loading of luminescent organic/inorganic materials into hydrogel matrices. Due to the intrinsic stimulus-responsiveness for hydrogels such as thermo-, pH, ionic strength, light and redox, luminescent hydrogels could respond to external physical or chemical stimuli through varying the luminescent properties such as colors, fluorescent intensity and so on, affording diverse application potential in addition to the pristine individual hydrogels or luminescent materials. Based on the rapid development of such area, here we systematically summarize and discuss the design protocols, properties as well as the applications of stimulus-responsive luminescent hydrogels. Because of the stimuli-responsiveness, biocompatibility, injectable and controllability of luminescent hydrogels, they are widely used as functional smart materials. We illustrate the applications of luminescent hydrogels. The future developments about luminescent hydrogels are also presented.
Collapse
Affiliation(s)
- Qiuhong Cheng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Aiyou Hao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China
| | - Pengyao Xing
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, People's Republic of China.
| |
Collapse
|
4
|
Wang X, Gan N, Gu M, Ling K, Ma C, Ma H, Yao W, Zhang Y, Shi H, An Z, Huang W. Subtle structure tailoring of metal-free triazine luminogens for highly efficient ultralong organic phosphorescence. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2018.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
5
|
Dang Q, Hu L, Wang J, Zhang Q, Han M, Luo S, Gong Y, Wang C, Li Q, Li Z. Multiple Luminescence Responses towards Mechanical Stimulus and Photo-Induction: The Key Role of the Stuck Packing Mode and Tunable Intermolecular Interactions. Chemistry 2019; 25:7031-7037. [PMID: 30882928 DOI: 10.1002/chem.201901116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Indexed: 01/18/2023]
Abstract
Organic luminescence with different forms continues to be one of the most active research fields in science and technology. Herein, an ultra-simple organic molecule (TPA-B), which exhibits both mechanoluminescence (ML) and photo-induced room-temperature phosphorescence (RTP) in the crystalline state, provides an opportunity to reveal the internal mechanism of ML and the dynamic process of photo-induced RTP in the same molecule. Through the detailed investigation of photophysical properties together with crystal structures, the key role of molecular packing and intermolecular interactions was highlighted in the luminescence response by mechanical and light stimulus, affording efficient strategies to design potential smart functional materials with multiple luminescence properties.
Collapse
Affiliation(s)
- Qianxi Dang
- Department of Chemistry, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Lanzhen Hu
- Department of Chemistry, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jiaqiang Wang
- Department of Chemistry, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qunhua Zhang
- Department of Chemistry, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Mengmeng Han
- Department of Chemistry, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Simeng Luo
- Department of Chemistry, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yanbin Gong
- Department of Chemistry, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Can Wang
- Department of Chemistry, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Qianqian Li
- Department of Chemistry, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Zhen Li
- Department of Chemistry, Sauvage Center for Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.,Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
6
|
Recent Advances in Purely Organic Room Temperature Phosphorescence Polymer. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2218-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Wang J, Wang C, Gong Y, Liao Q, Han M, Jiang T, Dang Q, Li Y, Li Q, Li Z. Bromine‐Substituted Fluorene: Molecular Structure, Br–Br Interactions, Room‐Temperature Phosphorescence, and Tricolor Triboluminescence. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201811660] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiaqiang Wang
- Department of ChemistryWuhan University Wuhan 430072 China
| | - Can Wang
- Department of ChemistryWuhan University Wuhan 430072 China
| | - Yanbin Gong
- Department of ChemistryWuhan University Wuhan 430072 China
| | - Qiuyan Liao
- Department of ChemistryWuhan University Wuhan 430072 China
| | - Mengmeng Han
- Department of ChemistryWuhan University Wuhan 430072 China
| | - Tianjiao Jiang
- Department of ChemistryWuhan University Wuhan 430072 China
| | - Qianxi Dang
- Department of ChemistryWuhan University Wuhan 430072 China
| | - Yaqin Li
- Department of ChemistryWuhan University Wuhan 430072 China
| | - Qianqian Li
- Department of ChemistryWuhan University Wuhan 430072 China
| | - Zhen Li
- Department of ChemistryWuhan University Wuhan 430072 China
- Institute of Molecular Aggregation ScienceTianjin University Tianjin 300072 China
| |
Collapse
|
8
|
Wang J, Wang C, Gong Y, Liao Q, Han M, Jiang T, Dang Q, Li Y, Li Q, Li Z. Bromine-Substituted Fluorene: Molecular Structure, Br-Br Interactions, Room-Temperature Phosphorescence, and Tricolor Triboluminescence. Angew Chem Int Ed Engl 2018; 57:16821-16826. [PMID: 30375137 DOI: 10.1002/anie.201811660] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Indexed: 12/11/2022]
Abstract
Organic tribophosphorescence materials are rarely reported and the introduction of Br atoms may be a practical way to design such materials. Here four bromine-substituted fluorene-based derivatives are presented and BrFlu-CBr, having fluorescence-phosphorescence dual-emission induced not only by UV light but also by mechanical stimulus, manifests the highest phosphorescence efficiency of 4.56 % upon photoirradiation. During the grinding process, three different triboluminescent spectra were identified. Upon introduction of a mechanical stimulus, the triboluminescence emission is cyan, whereas after an extended period it changed to blue. After removing the mechanical stimulus, green-white phosphorescent emission was observed. Careful research on single-crystal structures and theoretical calculations demonstrate that strong Br⋅⋅⋅Br interactions are vital to facilitate spin-orbit coupling and promote intersystem crossing, thus generating the unique properties.
Collapse
Affiliation(s)
- Jiaqiang Wang
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Can Wang
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yanbin Gong
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qiuyan Liao
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Mengmeng Han
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Tianjiao Jiang
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qianxi Dang
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Yaqin Li
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Qianqian Li
- Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Zhen Li
- Department of Chemistry, Wuhan University, Wuhan, 430072, China.,Institute of Molecular Aggregation Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
9
|
Luo W, Zhang Y, Gong Y, Zhou Q, Zhang Y, Yuan W. Crystallization-induced phosphorescence, remarkable mechanochromism, and grinding enhanced emission of benzophenone-aromatic amine conjugates. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Liu G, Hu J, Liu S. Emerging Applications of Fluorogenic and Non-fluorogenic Bifunctional Linkers. Chemistry 2018; 24:16484-16505. [PMID: 29893499 DOI: 10.1002/chem.201801290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Indexed: 01/06/2023]
Abstract
Homo- and hetero-bifunctional linkers play vital roles in constructing a variety of functional systems, ranging from protein bioconjugates with drugs and functional agents, to surface modification of nanoparticles and living cells, and to the cyclization/dimerization of synthetic polymers and biomolecules. Conventional approaches for assaying conjugation extents typically rely on ex situ techniques, such as mass spectrometry, gel electrophoresis, and size-exclusion chromatography. If the conjugation process involving bifunctional linkers was rendered fluorogenic, then in situ monitoring, quantification, and optical tracking/visualization of relevant processes would be achieved. In this review, conventional non-fluorogenic linkers are first discussed. Then the focus is on the evolution and emerging applications of fluorogenic bifunctional linkers, which are categorized into hetero-bifunctional single-caging fluorogenic linkers, homo-bifunctional double-caging fluorogenic linkers, and hetero-bifunctional double-caging fluorogenic linkers. In addition, stimuli-cleavable bifunctional linkers designed for both conjugation and subsequent site-specific triggered release are also summarized.
Collapse
Affiliation(s)
- Guhuan Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P.R. China
| | - Jinming Hu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P.R. China
| | - Shiyong Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the MicroscaleiChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Department of Polymer Science and Engineering, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P.R. China
| |
Collapse
|
11
|
He Z, Cai X, Wang Z, Chen D, Li Y, Zhao H, Liu K, Cao Y, Su SJ. Reversible switching between normal and thermally activated delayed fluorescence towards “smart” and single compound white-light luminescence via controllable conformational distribution. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9219-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Triarylamines with branched multi-pyridine groups: modulation of emission properties by structural variation, solvents, and tris(pentafluorophenyl)borane. Sci China Chem 2018. [DOI: 10.1007/s11426-017-9202-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Self-twisting for macrochirality from an achiral asterisk molecule with fluorescence-phosphorescence dual emission. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|