1
|
Zhang Y, Duan Y, Wu H, Xu H, Pei F, Shi L, Wang J, Yi Q. Ionic-Liquid-Assisted One-Step Construction of Mesoporous Metal-Organic Frameworks. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:2491-2499. [PMID: 36745709 DOI: 10.1021/acs.langmuir.2c02412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The synthesis of ionic-mesoporous-metal-organic frameworks (ionic-meso-MOFs) has received considerable interest in the fields of macromolecular adsorption, acid-base catalysis, ionic conductivity, etc.; yet, their synthesis still presents significant difficulties. In this study, functionalized mesoporous MIL-101-ILs (Cr) was facilely constructed via an in situ self-assembly method by using aromatic-anion-functionalized ionic liquids (ILs) as competitive ligands. It has been demonstrated that the inclusion of an aromatic moiety into an IL improves the coordination ability and is advantageous for the anchoring of ILs on Cr3+ via amino-metal coordination. Thus, ionic-meso-MOFs with a specific surface area of 441.9-624.9 cm2/g and an average pore diameter of 5.5 to 8.4 nm were successfully synthesized. Because of the presence of open Lewis acidic metal sites on the MOFs and basic active sites on the ILs, the resulting ionic-meso-MOFs demonstrated both an acid-base cooperative effect and a mesoporous structure, indicating a high potential for acid-base catalysis. This in situ synthesis procedure for ionic mesoporous MOFs offers a simple method for developing and fabricating multifunctional mesoporous materials.
Collapse
Affiliation(s)
- Yuke Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, P.R. China
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Yuanyuan Duan
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - Haonan Wu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Hongxue Xu
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Feng Pei
- Hubei Yihua Chemical Technology R&D Co.ltd, Yichang 443208, P. R. China
| | - Lijuan Shi
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
| | - Jiancheng Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| | - Qun Yi
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, P. R. China
- Hubei Yihua Chemical Technology R&D Co.ltd, Yichang 443208, P. R. China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan 030024, China
| |
Collapse
|
2
|
Xu YT, Ye ZM, Liu DX, Tian XY, Zhou DD, He CT, Chen XM. Non-3d metal modulated zinc imidazolate frameworks for CO2 cycloaddition in simulated flue gas under ambient condition. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Photocatalytic carboxylation with CO2. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
4
|
Chen C, Yan X, Wu R, Wu Y, Zhu Q, Hou M, Zhang Z, Fan H, Ma J, Huang Y, Ma J, Sun X, Lin L, Liu S, Han B. Quasi-square-shaped cadmium hydroxide nanocatalysts for electrochemical CO 2 reduction with high efficiency. Chem Sci 2021; 12:11914-11920. [PMID: 34659731 PMCID: PMC8442700 DOI: 10.1039/d1sc02328d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/09/2021] [Indexed: 11/21/2022] Open
Abstract
Powered by a renewable electricity source, electrochemical CO2 reduction reaction is a promising solution to facilitate the carbon balance. However, it is still a challenge to achieve a desired product with commercial current density and high efficiency. Herein we designed quasi-square-shaped cadmium hydroxide nanocatalysts for CO2 electroreduction to CO. It was discovered that the catalyst is very active and selective for the reaction. The current density could be as high as 200 mA cm-2 with a nearly 100% selectivity in a commonly used H-type cell using the ionic liquid-based electrolyte. In addition, the faradaic efficiency of CO could reach 90% at a very low overpotential of 100 mV. Density functional theory studies and control experiments reveal that the outstanding performance of the catalyst was attributed to its unique structure. It not only provides low Cd-O coordination, but also exposes high activity (002) facet, which requires lower energy for the formation of CO. Besides, the high concentration of CO can be achieved from the low concentration CO2 via an adsorption-electrolysis device.
Collapse
Affiliation(s)
- Chunjun Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xupeng Yan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ruizhi Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yahui Wu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Minqiang Hou
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Zhaofu Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Honglei Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Jun Ma
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Yuying Huang
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201204 China
| | - Jingyuan Ma
- Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory (SSRF, ZJLab), Shanghai Advanced Research Institute, Chinese Academy of Sciences Shanghai 201204 China
| | - Xiaofu Sun
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Longfei Lin
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shoujie Liu
- Chemistry and Chemical Engineering of Guangdong Laboratory Shantou 515063 China
- College of Chemistry and Materials Science, Anhui Normal University Wuhu 241000 China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University Shanghai 200062 China
| |
Collapse
|
5
|
Abstract
ConspectusMetal-free catalysis is a promising protocol to access chemicals without metal contamination. Ionic liquids (ILs) that are entirely composed of organic cations and inorganic/organic anions have emerged as promising alternatives to molecular solvents and metal catalysts due to their unique properties such as structural tunability, the coexistence of multiple interactions among ions (e.g., electrostatic interaction, hydrogen bonding, van de Waals forces, acid/base interactions, hydrophilic/hydrophobic interactions, etc.), unique affinity for a wide range of chemicals, good chemical and thermal stability, and quite low volatility. ILs have shown potential applications in various chemical processes.In this Account, we systematically described our most recent work on IL-catalyzed approaches under metal-free conditions. The first section presents the IL-catalyzed strategies toward the transformation of CO2 to value-added chemicals, focusing on the CO2-reactive IL-catalyzed CO2 transformation to various heterocycles and the IL-catalyzed reductive transformation of CO2 to chemicals. In these approaches, we designed task-specific ILs that are able to chemically capture and activate CO2 via forming anion-based carbonate/carbamate or cation-based carboxylate/carbamate intermediates, thus further accomplishing its transformation to a series of heterocycles including quinazoline-2,4(1H,3H)-diones, cyclic carbonates, 2-oxazolidinones, oxazolones, and benzimidazolones under metal-free conditions. For the IL-catalyzed approaches to reducing CO2 with hydrosilanes to chemicals, we employed ILs capable of activating the Si-H bond in hydrosilanes and the N-H bond in amine substrates via H-bonding, thus achieving the reductive transformation of CO2 to formamides, benzimidazoles, and benzothiazoles via cooperative catalysis. The second section describes our finding on the IL-catalyzed hydration of the C≡C bond in propargylic alcohols. Azolate anion-based ILs that can chemically capture CO2 via the formation of carbamates could serve as robust nucleophiles to attack the C≡C bond in propargylic alcohols and then efficiently catalyze the hydration of propargylic alcohols to produce α-hydroxy ketones with the assistance of atmospheric CO2 gas under metal-free conditions. The third section unveils the cooperative catalysis strategy of hydrogen bond donors and acceptors of ILs for chemical reactions. In the hydrogen-bonding catalysis protocols, cations of the ILs act as H-bond donors and anions, as acceptors, forming H-bonds with the reactant molecules, respectively, in opposite ways, which can cooperatively catalyze the ring-closing C-O/C-O bond metathesis reactions of aliphatic diethers to O-heterocycles, the dehydrative etherification of alcohols to ethers, and direct oxidative esterification of alcohols to esters. We believe that these IL-catalyzed metal-free processes and strategies display promising practical applications, and their commercialization would bring great benefits to the production of the as-afforded value-added chemicals.
Collapse
Affiliation(s)
- Yanfei Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhimin Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Colloid, Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Chen X, Yue J, Wang K, Gui Y, Niu Y, Liu J, Ran C, Kong W, Zhou W, Yu D. Nickel‐Catalyzed Asymmetric Reductive Carbo‐Carboxylation of Alkenes with CO
2. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiao‐Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jun‐Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Kuai Wang
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Yong‐Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 P. R. China
| | - Ya‐Nan Niu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jie Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Chuan‐Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Wen‐Jun Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang 641100 P. R. China
| | - Da‐Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
7
|
Chen X, Yue J, Wang K, Gui Y, Niu Y, Liu J, Ran C, Kong W, Zhou W, Yu D. Nickel‐Catalyzed Asymmetric Reductive Carbo‐Carboxylation of Alkenes with CO
2. Angew Chem Int Ed Engl 2021; 60:14068-14075. [DOI: 10.1002/anie.202102769] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Indexed: 01/07/2023]
Affiliation(s)
- Xiao‐Wang Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jun‐Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Kuai Wang
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Yong‐Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Materials Science Sichuan Normal University Chengdu 610068 P. R. China
| | - Ya‐Nan Niu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jie Liu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Chuan‐Kun Ran
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Wangqing Kong
- The Center for Precision Synthesis Institute for Advanced Studies Wuhan University Wuhan 430072 P. R. China
| | - Wen‐Jun Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- College of Chemistry and Chemical Engineering Neijiang Normal University Neijiang 641100 P. R. China
| | - Da‐Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education College of Chemistry Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
- Beijing National Laboratory for Molecular Sciences Beijing 100190 P. R. China
| |
Collapse
|
8
|
McNeice P, Marr PC, Marr AC. Basic ionic liquids for catalysis: the road to greater stability. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02274h] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Homogeneous and heterogenized basic ionic liquids as reaction catalysts have been highlighted, particularly where they are used to promote reactions that could form the basis of more sustainable energy and chemical production.
Collapse
Affiliation(s)
- Peter McNeice
- Queen's University Ionic Liquids Laboratories and
- The School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| | - Patricia C. Marr
- Queen's University Ionic Liquids Laboratories and
- The School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| | - Andrew C. Marr
- Queen's University Ionic Liquids Laboratories and
- The School of Chemistry and Chemical Engineering
- Queen's University Belfast
- Belfast
- UK
| |
Collapse
|
9
|
Wang Z, Li D, Chen S, Hu J, Gong Y, Guo Y, Deng T. Ionic liquid [DBUH][BO2]: an excellent catalyst for chemical fixation of CO 2 under mild conditions. NEW J CHEM 2021. [DOI: 10.1039/d0nj04631k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The basic IL [DBUH][BO2] was easily synthesized and used for the chemical fixation of CO2 at atmospheric pressure and room temperature.
Collapse
Affiliation(s)
- Zheng Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Da Li
- Tianjin Colouroad Coatings & Chemicals Co., Ltd
- Tianjin, 300457
- China
| | - Shangqing Chen
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Jiayin Hu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Yanxi Gong
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Yafei Guo
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Tianlong Deng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| |
Collapse
|
10
|
Zhang Y, Yang G, Xie R, Yang L, Li B, Wu G. Scalable, Durable, and Recyclable Metal‐Free Catalysts for Highly Efficient Conversion of CO
2
to Cyclic Carbonates. Angew Chem Int Ed Engl 2020; 59:23291-23298. [DOI: 10.1002/anie.202010651] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Yao‐Yao Zhang
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Guan‐Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Li Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Bo Li
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Yuhangtang Road 2318 Hangzhou 311121 China
| | - Guang‐Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| |
Collapse
|
11
|
Zhang Y, Yang G, Xie R, Yang L, Li B, Wu G. Scalable, Durable, and Recyclable Metal‐Free Catalysts for Highly Efficient Conversion of CO
2
to Cyclic Carbonates. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010651] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Yao‐Yao Zhang
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Guan‐Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Rui Xie
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Li Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| | - Bo Li
- College of Material Chemistry and Chemical Engineering Hangzhou Normal University Yuhangtang Road 2318 Hangzhou 311121 China
| | - Guang‐Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization Adsorption and Separation Materials and Technologies of Zhejiang Province Department of Polymer Science and Engineering Zhejiang University Zhe Da Road 38 Hangzhou 310027 China
| |
Collapse
|
12
|
Wang S, Zhu Z, Hao D, Su T, Len C, Ren W, Lü H. Synthesis cyclic carbonates with BmimCl-based ternary deep eutectic solvents system. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101250] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
|
14
|
Song L, Jiang YX, Zhang Z, Gui YY, Zhou XY, Yu DG. CO2 = CO + [O]: recent advances in carbonylation of C–H bonds with CO2. Chem Commun (Camb) 2020; 56:8355-8367. [DOI: 10.1039/d0cc00547a] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Carbon dioxide (CO2) is an ideal one-carbon source owing to its nontoxicity, abundance, availability, and recyclability.
Collapse
Affiliation(s)
- Lei Song
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yuan-Xu Jiang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Zhen Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Yong-Yuan Gui
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Xiao-Yu Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education
- College of Chemistry
- Sichuan University
- Chengdu 610064
- P. R. China
| |
Collapse
|
15
|
Zhang Z, Xu H, Guo D, Chen J, Du J, Hou M, Zhang Y, Xu L, Wang H, Wang G. Molecular design and experimental study on synergistic catalysts for the synthesis of cyclocarbonate from styrene oxide and CO 2. NEW J CHEM 2020. [DOI: 10.1039/d0nj03689g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Taking the reaction between styrene oxide and CO2 to yield cyclocarbonate as the target, the activities of synergistic catalysts, which are composed of Br− and alcohol compounds serving as hydrogen bond donors (HBDs), were predicted by DFT calculations and confirmed by subsequent experiments.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- People's Republic of China
| | - Haoyang Xu
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- People's Republic of China
| | - Dongjie Guo
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- People's Republic of China
| | - Junli Chen
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- People's Republic of China
| | - Junping Du
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- People's Republic of China
| | - Miaomiao Hou
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- People's Republic of China
| | - Yanda Zhang
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- People's Republic of China
| | - Liancai Xu
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- People's Republic of China
| | - Hailong Wang
- College of Biological
- Chemical Sciences and Engineering
- Jiaxing University
- Jiaxing
- People's Republic of China
| | - Guoqing Wang
- Department of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou
- People's Republic of China
| |
Collapse
|
16
|
Catalytic conversion of CO2 and shale gas-derived substrates into saturated carbonates and derivatives: Catalyst design, performances and reaction mechanism. J CO2 UTIL 2019. [DOI: 10.1016/j.jcou.2019.05.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Chen F, Zhang QC, Wei D, Bu Q, Dai B, Liu N. Highly Stereo-Controlled Synthesis of Fatty Acid-Derived Cyclic Carbonates by Using Iron(II) Complex and Nucleophilic Halide. J Org Chem 2019; 84:11407-11416. [DOI: 10.1021/acs.joc.9b01068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Fei Chen
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Qiao-Chu Zhang
- College of Chemistry and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province 450001, People’s Republic of China
| | - Donghui Wei
- College of Chemistry and Molecular Engineering, Center of Computational Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan Province 450001, People’s Republic of China
| | - Qingqing Bu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| | - Ning Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, People’s Republic of China
| |
Collapse
|
18
|
Song B, Bai T, Xu X, Chen X, Liu D, Guo J, Qin A, Ling J, Tang BZ. Multifunctional Linear and Hyperbranched Five-Membered Cyclic Carbonate-Based Polymers Directly Generated from CO2 and Alkyne-Based Three-Component Polymerization. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00898] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bo Song
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Tianwen Bai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaotian Xu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Xu Chen
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Dongming Liu
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jiali Guo
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
19
|
Chen S, Wang Z, Hu J, Guo Y, Deng T. Efficient transformation of CO2 into quinazoline-2,4(1H,3H)-diones at room temperature catalyzed by a ZnI2/NEt3 system. NEW J CHEM 2019. [DOI: 10.1039/c9nj04302k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The readily available ZnI2/NEt3 system promotes the efficient transformation of CO2 and 2-aminobenzonitriles into quinazoline-2,4(1H,3H)-diones at room temperature and low CO2 pressure.
Collapse
Affiliation(s)
- Shangqing Chen
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Zheng Wang
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Jiayin Hu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Yafei Guo
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| | - Tianlong Deng
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- China
| |
Collapse
|