1
|
C(sp3),N palladacyclic complexes bearing flexidentate ligands as efficient (pre)catalysts for Heck olefination of aryl halides. J Catal 2022. [DOI: 10.1016/j.jcat.2021.11.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
2
|
Kang SM, Han SS, Zhu YY, Wu ZQ. Cobalt(III) Porphyrin-Decorated Stereoregular Polyisocyanides Enable Highly Effective Cooperative Catalysis for Hydration of Alkynes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Shu-Ming Kang
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Shan-Shan Han
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| | - Zong-Quan Wu
- School of Chemistry and Chemical Engineering and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei 230009, China
| |
Collapse
|
3
|
Wang X, Li B, Peng J, Wang B, Qin A, Tang BZ. Multicomponent Polymerization of Alkynes, Isocyanides, and Isocyanates toward Heterocyclic Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Xiaoheng Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Baixue Li
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Jianwen Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Bingnan Wang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, AIE Institute, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 518172, China
| |
Collapse
|
4
|
Chiral Recognition and Resolution Based on Helical Polymers. CHINESE JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1007/s10118-021-2615-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Multiwalled Carbon Nanotubes Modified with Silylated-salicylaldimine Co(II) and Pd(II) Complexes as Precatalysts in Ethylene Oligomerization. Chem Res Chin Univ 2021. [DOI: 10.1007/s40242-021-1067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Recyclable Helical Poly(phenyl isocyanide)-Supported l-Proline Catalyst for Direct Asymmetric Aldol Reaction in Brine. Catal Letters 2021. [DOI: 10.1007/s10562-020-03369-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
Highly selective detection of nitroaromatic explosive 2,4,6-trinitrophenol (TNP) using N-doped carbon dots. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04410-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
Fan L, Wang X, Wu D. Polyhedral Oligomeric Silsesquioxanes (
POSS
)‐based Hybrid Materials: Molecular Design, Solution
Self‐Assembly
and Biomedical Applications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000536] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Linfeng Fan
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Decheng Wu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- Department of Biomedical Engineering, Southern University of Science and Technology Shenzhen Guangdong 518055 China
| |
Collapse
|
9
|
Zhou DY, Miura-Akagi PM, McCarty SM, Guiles CH, O'Donnell TJ, Yoshida WY, Krause CE, Rheingold AL, Hughes RP, Cain MF. P-Alkynyl functionalized benzazaphospholes as transmetalating agents. Dalton Trans 2021; 50:599-611. [PMID: 33403375 DOI: 10.1039/d0dt01367f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Exposure of 10π-electron benzazaphosphole 1 to HCl, followed by nucleophilic substitution with the Grignard reagent BrMgCCPh afforded alkynyl functionalized 3 featuring an exocyclic -C[triple bond, length as m-dash]C-Ph group with an elongated P-C bond (1.7932(19) Å). Stoichiometric experiments revealed that treatment of trans-Pd(PEt3)2(Ar)(i) (Ar = p-Me (C) or p-F (D)) with 3 generated trans-Pd(PEt3)2(Ar)(CCPh) (Ar = p-Me (E) or p-F (F)), 5, which is the result of ligand exchange between P-I byproduct 4 and C/D, and the reductively eliminated product (Ar-C[triple bond, length as m-dash]C-Ph). Cyclic voltammetry studies showed and independent investigations confirmed 4 is also susceptible to redox processes including bimetallic oxidative addition to Pd(0) to give Pd(i) dimer 6-Pd2-(P(t-Bu)3)2 and reduction to diphosphine 7. During catalysis, we hypothesized that this unwanted reactivity could be circumvented by employing a source of fluoride as an additive. This was demonstrated by conducting a Sonogashira-type reaction between 1-iodotoluene and 3 in the presence of 10 mol% Na2PdCl4, 20 mol% P(t-Bu)Cy2, and 5 equiv. of tetramethylammonium fluoride (TMAF), resulting in turnover and the isolation of Ph-C[triple bond, length as m-dash]C-(o-Tol) as the major product.
Collapse
Affiliation(s)
- Daniel Y Zhou
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| | - Preston M Miura-Akagi
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| | - Sierra M McCarty
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| | - Celeste H Guiles
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| | - Timothy J O'Donnell
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| | - Wesley Y Yoshida
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| | - Colleen E Krause
- Department of Chemistry, University of Hartford, 200 Bloomfield Avenue, West Hartford, Connecticut 06117, USA
| | - Arnold L Rheingold
- Department of Chemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093, USA
| | - Russell P Hughes
- 6128 Burke Laboratory, Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755, USA
| | - Matthew F Cain
- Department of Chemistry, University of Hawai'i at Mānoa, 2545 McCarthy Mall, Honolulu, Hawaii 96822, USA.
| |
Collapse
|
10
|
Synthesis, properties, and degradation behaviors of novel polysulfone-polysiloxane multi-block copolymers. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Abstract
Research interest in the isocyanide-based reaction can be traced back to 1921 when the Passerini reaction was first reported. However, most of these research efforts did not lead to important progress in the synthesis of isocyanide-based polymers (IBPs). The major challenge resides in the lack of highly efficient polymerization methods, which limits large-scale preparation and applications. Modern organic chemistry provides efficient access to develop functional IBPs on the basis of isocyanide chemistry. However, it is still challenging to prepare the IBPs with small molecular isocyanide reaction. Our investigations into catalyst exploration and polymerization methodology have prompted the synthesis of a series of IBPs. Two classes of isocyanide monomers can be used for the construction of IBPs. The first class includes monomers with a single isocyanide. Novel catalysts for the synthetic chemistry of isocyanide allow the introduction of functional pendants into the linear polymer chains. This molecular functionalization endows the polymers with an array of new functional properties. For example, the incorporation of a chromophore on the polymeric side chain provides novel functional properties, such as aggregation-induced emission and optical activity. Diisocyanide monomers can be also utilized for the construction of heterocyclic, spiro-heterocyclic, and bispiro-heterocyclic polymers in the polymeric backbones. A new concept of "multi-component spiropolymerization" has been developed for the preparation of spiropolymers using the catalysis-free one-pot reaction. Proper structural design allows for the preparation of a heterocyclic polymeric chain with natural bioactivity and biological compatibility, generating new IBPs with biofunctionalities.In this Account, we discuss progress mainly made in our lab and related fields for the design of isocyanide monomers, exploration of new catalysts, and optimization of reaction conditions. The subsequent section discusses the characteristic properties and applications of selected examples of these functional polymers, mainly focusing on their optical applications. We have investigated the UV-sensitive IBPs that could potentially be used for lithography applications. One-pot highly efficient polymerization of diisocyanides and CO2 under mild conditions can provide a new method for realizing the reuse of CO2 and reducing the greenhouse effect. Through a combination of structural modifications, IBPs bearing dimethylbenzene moieties exhibit characteristics of black materials that can be potentially utilized as pyroelectric sensors, thermal detectors, and optical instruments. Most recently, our group synthesized a spiro-heterocyclic IBP with clusterization-triggered emission properties that can be used to discriminate cancer cells from normal cells and provides a new method for the treatment of cancer. The studies reviewed in this Account suggest that polymerization with isocyanide chemistry can be implemented in diverse functional macromolecules and materials.
Collapse
Affiliation(s)
- Zhengxu Cai
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yue Ren
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaofang Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jianbing Shi
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Tong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuping Dong
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
12
|
Nishinaka K, Han J, Han D, Liu Y, Du Y, Wang M, Eerdun C, Naruse N, Mera Y, Furusho Y, Tsuda A. A Chiral Metal-Organic 1D-Coordination Polymer Upon Complexation of Phenylene-Bridged Bipyrrole and Palladium (II) Ion. Front Chem 2020; 8:613932. [PMID: 33335891 PMCID: PMC7736045 DOI: 10.3389/fchem.2020.613932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 11/06/2020] [Indexed: 11/13/2022] Open
Abstract
Metal-organic 1D-coordination polymers, having unique electronic and optical properties, are expected to be a novel advanced functional material capable of fabricating smart plastics, films, and fibers. In this study, we have synthesized a novel metal-organic 1D-coordination polymer composed of a phenylene-bridged bipyrrole bearing N-alkylimino groups (BPI) and palladium(II) ion. The BPI and Pd(II) form square planar bis(bidentate) complex to form a metal coordinated π-conjugation polymer (Poly-BPI/Pd). It is stable in solutions at room temperature, and allowed measurement of its average molecular weight in SEC (M w = 106,000 and M n = 18,000, M w/M n = 5.88). It also provided a reversible multi redox profile in cyclic voltammetry, most likely originating from strong π-electronic interactions between the BPI components via Pd ion. A variety of substituent groups can be attached to the imino-nitrogens of BPI. A coordination polymer composed of a BPI derivative bearing chiral alkyl chains and Pd(II) showed strong circular dichroism (CD) in the solution due to the unidirectional chiral conformation of the BPI components in the polymer backbone.
Collapse
Affiliation(s)
- Kumiko Nishinaka
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Jiandong Han
- Department of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Dongli Han
- Department of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Yue Liu
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
| | - Yanqing Du
- Department of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Meiling Wang
- Department of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Chaolu Eerdun
- Department of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
| | - Nobuyasu Naruse
- Department of Chemistry, Shiga University of Medical Science, Otsu, Japan
| | - Yutaka Mera
- Department of Chemistry, Shiga University of Medical Science, Otsu, Japan
| | - Yoshio Furusho
- Department of Chemistry, Shiga University of Medical Science, Otsu, Japan
| | - Akihiko Tsuda
- Department of Chemistry, Graduate School of Science, Kobe University, Kobe, Japan
- Department of Pharmaceutical Sciences, Inner Mongolia Medical University, Hohhot, China
- Department of Chemistry, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
13
|
Lin M, Wu Q, Li Q, Hou X, Zou H. Synthesis of Dendrimer‐Like Helical Poly(Phenyl Isocyanide)s Using Air‐Stable Palladium Complexes with Double Arms. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Min Lin
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei Anhui Province 230009 China
| | - Qi‐Liang Wu
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei Anhui Province 230009 China
| | - Qian‐Wei Li
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei Anhui Province 230009 China
| | - Xiao‐Hua Hou
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei Anhui Province 230009 China
| | - Hui Zou
- Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering, and Anhui Key Laboratory of Advanced Catalytic Materials and Reaction Engineering Hefei University of Technology 193 Tunxi Road Hefei Anhui Province 230009 China
| |
Collapse
|
14
|
Collet JW, Roose TR, Weijers B, Maes BUW, Ruijter E, Orru RVA. Recent Advances in Palladium-Catalyzed Isocyanide Insertions. Molecules 2020; 25:E4906. [PMID: 33114013 PMCID: PMC7660339 DOI: 10.3390/molecules25214906] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Isocyanides have long been known as versatile chemical reagents in organic synthesis. Their ambivalent nature also allows them to function as a CO-substitute in palladium-catalyzed cross couplings. Over the past decades, isocyanides have emerged as practical and versatile C1 building blocks, whose inherent N-substitution allows for the rapid incorporation of nitrogeneous fragments in a wide variety of products. Recent developments in palladium catalyzed isocyanide insertion reactions have significantly expanded the scope and applicability of these imidoylative cross-couplings. This review highlights the advances made in this field over the past eight years.
Collapse
Affiliation(s)
- Jurriën W. Collet
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Thomas R. Roose
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Bram Weijers
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Bert U. W. Maes
- Organic Synthesis, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Eelco Ruijter
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
| | - Romano V. A. Orru
- Department of Chemistry and Pharmaceutical Sciences and Amsterdam Institute for Molecules, Medicines & Systems (AIMMS), Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; (J.W.C.); (T.R.R.); (B.W.)
- Organic Chemistry, Aachen-Maastricht Institute for Biobased Materials, Maastricht University, Urmonderlaan 22, 6167 RD Geleen, The Netherlands
| |
Collapse
|
15
|
Marin‐Luna M, Alajarin M. The Elusive 1,4‐Diazabutatrienes: Lurking in the Shadows. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000518] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Marta Marin‐Luna
- Departamento de Química Orgánica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia Campus de Espinardo 30100 Murcia Spain
| | - Mateo Alajarin
- Departamento de Química Orgánica Regional Campus of International Excellence “Campus Mare Nostrum” Universidad de Murcia Campus de Espinardo 30100 Murcia Spain
| |
Collapse
|
16
|
Cheng T, Chen Y, Ding J, Qin A, Tang BZ. Isocyanoacetate-Aldehyde Polymerization: A Facile Tool toward Functional Oxazoline-Containing Polymers. Macromol Rapid Commun 2020; 41:e2000179. [PMID: 32463567 DOI: 10.1002/marc.202000179] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 12/11/2022]
Abstract
As an important nitrogen source, isocyanides have been involved in numerous organic reactions. As a result, many complicated compounds have been successfully synthesized through isocyanide chemistry. However, compared with its popular research in organic reactions, the application of isocyanides in polymerization is less investigated. In this work, a new polymerization based on isocyanide monomers is established. By simply mixing diisocyanoacetates and dialdehydes in the presence of a catalytic system of CuCl/PPh3 /organobase in dichloromethane at room temperature readily produces soluble and thermally stable oxazoline-containing polymers with moderate weight-averaged molecular weights (Mw up to 11 200) in excellent yields (up to 97%) after 6 h. Furthermore, introducing the tetraphenylethene moiety into the main chains endows the resultant polymers with aggregation-induced emission, which can function as fluorescent probes for Fe3+ ion detection with high sensitivity and selectivity. This work not only enriches the family of isocyanide-based polymerizations but also provides an efficient tool for the preparation of functional heterocycle-containing polymers.
Collapse
Affiliation(s)
- Tianyu Cheng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Yizhao Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Jie Ding
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China.,Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Institute for Advanced Study, Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
17
|
Wang S, Feng X, Zhang J, Wan X. Doublet Chirality Transfer and Reversible Helical Transition in Poly(3,5‐disubstituted phenylacetylene)s with Pyrene as a Probe Unit
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sheng Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Xuanyu Feng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| |
Collapse
|
18
|
Wang S, Cai SL, Zhang J, Wan XH. Tunable Cis-cisoid Helical Conformation of Poly(3,5-disubstibuted phenylacetylene)s Stabilized by n→π* Interaction. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-020-2376-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
Halogen effects on phenylethynyl palladium(II) complexes for living polymerization of isocyanides. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9467-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
20
|
Li X, Wang R, Wu C, Chen J, Zhang J, Cui D, Wan X. Effect of the tactic structure on the chiroptical properties of helical vinylbiphenyl polymers. Polym Chem 2019. [DOI: 10.1039/c9py00481e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The effect of a tactic structure on the chiroptical properties of helical vinylbiphenyl polymers is systematically studied.
Collapse
Affiliation(s)
- Xiaofu Li
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Rong Wang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Chunji Wu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Junxian Chen
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Jie Zhang
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| | - Dongmei Cui
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- China
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Sciences
- Key Laboratory of Polymer Chemistry and Physics of Ministry of Education
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing 100871
| |
Collapse
|