1
|
Sheng W, Wang Z, Wu G, Guo L, Guo X, Hao E, Jiao L. Synthesis, Photophysical, and Redox Properties of Naphtho[2,1- b]-Fused AzaBODIPYs with Ultradeep Lowest Unoccupied Molecular Orbital Levels. Org Lett 2025. [PMID: 40448672 DOI: 10.1021/acs.orglett.5c01411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2025]
Abstract
A streamlined chromatography-free synthesis of conformationally restricted six-membered-ring-fused azaBODIPYs via a classical Michael addition-cyclization sequence has been developed. Subsequent stepwise 2,3-dichloro-5,6-dicyano-1,4-benzoquinone-mediated dehydrogenative aromatization yields the first naphtho[2,1-b]-fused azaBODIPYs, demonstrating progressively lowered lowest unoccupied molecular orbital (LUMO) levels (up to -4.39 eV) upon oxidation, which aligns with enhanced electron-accepting behavior. These novel fused azaBODIPYs show intense near-infrared absorption and form radical anions in the presence of cobaltocene, exhibiting a red-shifted absorption maxima at 877 nm.
Collapse
Affiliation(s)
- Wanle Sheng
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
| | - Zhangcui Wang
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
| | - Guoao Wu
- School of Pharmacy, Bengbu Medical University, 2600 Donghai Avenue, Bengbu 233000, China
| | - Luying Guo
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids of Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xing Guo
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids of Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Erhong Hao
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids of Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Lijuan Jiao
- Anhui Laboratory of Molecule-Based Materials, Key Laboratory of Functional Molecular Solids of Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|
2
|
Killian L, Lutz M, Thevenon A. A π-extended β-diketiminate ligand via a templated Scholl approach. Chem Commun (Camb) 2024; 60:6663-6666. [PMID: 38860402 PMCID: PMC11198738 DOI: 10.1039/d4cc01627k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
We report a templated Scholl oxidation strategy for the preparation of the first β-diketiminate (BDI) ligands embedded within a 24-electron π-system backbone. The resulting benzo[f,g]tetracene BDI ligand was coordinated to a zinc centre and electrochemical studies showed the redox active nature of the ligand.
Collapse
Affiliation(s)
- Lars Killian
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| | - Martin Lutz
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Arnaud Thevenon
- Organic Chemistry and Catalysis, Institute for Sustainable and Circular Chemistry, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.
| |
Collapse
|
3
|
Chen J, Zhang W, Wang L, Yu G. Recent Research Progress of Organic Small-Molecule Semiconductors with High Electron Mobilities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210772. [PMID: 36519670 DOI: 10.1002/adma.202210772] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Organic electronics has made great progress in the past decades, which is inseparable from the innovative development of organic electronic devices and the diversity of organic semiconductor materials. It is worth mentioning that both of these great advances are inextricably linked to the development of organic high-performance semiconductor materials, especially the representative n-type organic small-molecule semiconductor materials with high electron mobilities. The n-type organic small molecules have the advantages of simple synthesis process, strong intermolecular stacking, tunable molecular structure, and easy to functionalize structures. Furthermore, the n-type semiconductor is a remarkable and important component for constructing complementary logic circuits and p-n heterojunction structures. Therefore, n-type organic semiconductors play an extremely important role in the field of organic electronic materials and are the basis for the industrialization of organic electronic functional devices. This review focuses on the modification strategies of organic small molecules with high electron mobility at molecular level, and discusses in detail the applications of n-type small-molecule semiconductor materials with high mobility in organic field-effect transistors, organic light-emitting transistors, organic photodetectors, and gas sensors.
Collapse
Affiliation(s)
- Jiadi Chen
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Jiang W, Zhao G, Tian W, Sun Y. Aggregation-Induced Intermolecular Charge Transfer Emission for Solution-Processable Bipolar Host Material via Adjusting the Length of Alkyl Chain. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228099. [PMID: 36432201 PMCID: PMC9698787 DOI: 10.3390/molecules27228099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
Molecules with donor-spacer-acceptor configuration have been developed rapidly given their peculiar properties. How to utilize intermolecular interactions and charge transfers for solution-processed organic light-emitting diodes (OLEDs) greatly relies on molecular design strategy. Herein, soluble luminophores with D-spacer-A motif were constructed via shortening the alkyl chain from nonane to propane, where the alkyl chain was utilized as a spatial linker between the donor and acceptor. The alkyl chain blocks the molecular conjugation and induces the existence of aggregation-induced intermolecular CT emission, as well as the improved solubility and morphology in a solid-state film. In addition, the length of the alkyl chain affects the glass transition temperature, carrier transport and balance properties. The mCP-3C-TRZ with nonane as the spacer shows better thermal stability and bipolar carrier transport ability, so the corresponding solution-processable phosphorescent organic light-emitting diodes exhibit superior external quantum efficiency of 9.8% when using mCP-3C-TRZ as a host material. This work offers a promising strategy to establish a bipolar host via utilizing intermolecular charge transfer process in an aggregated state.
Collapse
|
5
|
Wang J, Yu C, Hao E, Jiao L. Conformationally restricted and ring-fused aza-BODIPYs as promising near infrared absorbing and emitting dyes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Yu C, Sun Y, Fang X, Li J, Wu Q, Bu W, Guo X, Wang H, Jiao L, Hao E. Aromatic-Ring-Fused BOPPY Fluorophores: Synthesis, Spectral, Redox Properties, and Bioimaging Application. Inorg Chem 2022; 61:16718-16729. [PMID: 36206458 DOI: 10.1021/acs.inorgchem.2c02517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetracoordinated organoboron dyes exhibiting strong fluorescence in either solution or the solid state are currently receiving much attraction in view of their photovoltaic, optoelectronic, and biological applications. Herein, a series of aromatic-ring-fused BOPPY dyes have been developed by one-pot condensation of formylated isoindoles or indoles and pyridinylhydrazine followed by subsequent borylation coordination. The facile synthesis provides excellent diversity of these unsymmetrical α-benzo- and β-benzothiophene-fused BOPPY dyes with intriguing photophysical properties owing to their rigid and planar structure and extended π-conjugation while containing a reactive site. They display intense green to orange fluorescence in solution and red-to-near-infrared emission in the solid state, with high fluorescence quantum yields up to 92 and 21%, respectively, relatively large Stokes shifts, and excellent photostability. Furthermore, two representative benzo-fused BOPPY probes with morpholine or benzenesulfonamide groups were developed and used to selectively "light up" the subcellular organelles such as lysosomes and endoplasmic reticulum under ultralow concentration, respectively.
Collapse
Affiliation(s)
- Changjiang Yu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China.,Postdoctoral Research Center of Suntex TEXTILE Technology Company, Ltd., Wuhu, 241200Anhui, China
| | - Yingzhu Sun
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| | - Xingbao Fang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering, Yantai University, Yantai264005, Shandong, China
| | - Qinghua Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei230012, China
| | - Weibin Bu
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| | - Xing Guo
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| | - Hua Wang
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| | - Lijuan Jiao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| | - Erhong Hao
- The Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu241002, China
| |
Collapse
|
7
|
Jiang W, Yu X, Li C, Zhang X, Zhang G, Liu Z, Zhang D. Fluoro-substituted DPP-bisthiophene conjugated polymer with azides in the side chains as ambipolar semiconductor and photoresist. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1279-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Borissov A, Maurya YK, Moshniaha L, Wong WS, Żyła-Karwowska M, Stępień M. Recent Advances in Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds. Chem Rev 2022; 122:565-788. [PMID: 34850633 PMCID: PMC8759089 DOI: 10.1021/acs.chemrev.1c00449] [Citation(s) in RCA: 287] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Indexed: 12/21/2022]
Abstract
This review surveys recent progress in the chemistry of polycyclic heteroaromatic molecules with a focus on structural diversity and synthetic methodology. The article covers literature published during the period of 2016-2020, providing an update to our first review of this topic (Chem. Rev. 2017, 117 (4), 3479-3716).
Collapse
Affiliation(s)
| | | | | | | | | | - Marcin Stępień
- Wydział Chemii, Uniwersytet
Wrocławski, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland
| |
Collapse
|
9
|
Chen Y, Liao Z, Cao T, Zhu S. An efficient method to synthesize N/O, O-difluoroboron complexes from alkynes. GREEN SYNTHESIS AND CATALYSIS 2021. [DOI: 10.1016/j.gresc.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
10
|
Kang Z, Wu Q, Guo X, Wang L, Ye Y, Yu C, Wang H, Hao E, Jiao L. FeCl 3-promoted regioselective synthesis of BODIPY dimers through oxidative aromatic homocoupling reactions. Chem Commun (Camb) 2021; 57:9886-9889. [PMID: 34494065 DOI: 10.1039/d1cc04098g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The direct 3,3'-dimerization of BODIPYs lacking substituent groups in the 1,2,6, and 7 positions was developed by oxidative coupling with FeCl3. This regioselective dimerization was achieved for BODIPYs substituted only in the 5-position with Cl or aryl groups. Further functionalization of the 5,5'-dichloride dimer gave the corresponding pyrrole or 4-(2-aminoethyl)morpholine disubstituted dimers 2f and 2g, respectively. While dimer 2f exhibited intense NIR absorption/emission maxima at 773/827 nm in toluene, dimer 2g showed favorable lysosome-targeting NIR fluorescence in living cells.
Collapse
Affiliation(s)
- Zhengxin Kang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Qinghua Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China. .,School of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230012, China
| | - Xing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Long Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Yin Ye
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Hua Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
11
|
Yu C, Fang X, Wang H, Guo X, Sun L, Wu Q, Jiao L, Hao E. A Family of Highly Fluorescent and Membrane-Permeable Bis(BF 2) Acyl-Pyridinylhydrazine Dyes with Strong Solid-State Emission and Large Stokes Shifts: The BOAPH Fluorophores. J Org Chem 2021; 86:11492-11501. [PMID: 34342463 DOI: 10.1021/acs.joc.1c01042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Organic small-molecule fluorescent chromophores have become essential to modern chemical, biological, and materials related investigations. Herein, a straightforward synthesis and subsequent borylation were presented to form a novel family of bisBF2-anchoring acyl-pyridinylhydrazine, which we named BOAPH. The chromophore enjoys outstanding structural diversities owing to varied acyl chlorides and N-heteroarenylhydrazides. These resultant BOAPH dyes are confirmed by NMR, HRMS, and single-crystal X-ray structure analysis. Their spectroscopic properties were studied, and most of the strong absorbance and bright fluorescence with maximum wavelengths centered in the range of 400 and 650 nm. More importantly, they exhibit promising fluorescence quantum yields up to 0.79 in solution and solid states, good photostability, and large Stokes shifts. Furthermore, a respective BOAPH dye with a para-dimethylaminophenyl group exhibited the interesting ability of ultrafast staining and two-photon imaging, which can specifically label lipid droplets of living cells immediately without the need for incubation.
Collapse
Affiliation(s)
- Changjiang Yu
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China.,Postdoctoral Research Center of Suntex TEXTILE Technology Co, Ltd., Wuhu, Anhui 241200, China.,State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Xingbao Fang
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Hua Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Xing Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Lilin Sun
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Qinghua Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Lijuan Jiao
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Erhong Hao
- Key Laboratory of Functional Molecular Solids, Ministry of Education; School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| |
Collapse
|
12
|
Wang J, Fang X, Guo X, Wu Q, Gong Q, Yu C, Hao E, Jiao L. Sterically Protected and Conformation-Restricted BOBHY Dyes with Bright Near-Infrared Fluorescence: N 2O-type Expanded BOPHY Dyes Derived from Boronic Acids. Org Lett 2021; 23:4796-4801. [PMID: 34080878 DOI: 10.1021/acs.orglett.1c01515] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A new family of N2O-type hydrazine-containing bipyrrole boron complexes has been developed via a one-pot condensation of formylisoindole, hydrazine, and various organoboronic acids. Because of the conformation-restricted coplanar structure and the axial-substituted aryl groups, these novel dyes show deep-red absorption, bright near-infrared (NIR) fluorescence in both solution and solid states, and good solubility in organic solvents. The derivative with pyridinium ions also has been synthesized as an NIR mitochondrially targetable fluorescent probe.
Collapse
Affiliation(s)
- Jun Wang
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.,Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Department of Chemical and Chemical Engineering, Hefei Normal University, Hefei 230601, China
| | - Xingbao Fang
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Xing Guo
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qinghua Wu
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Qingbao Gong
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Changjiang Yu
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijuan Jiao
- Laboratory of Functional Molecular Solids, Ministry of Education, School of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
13
|
Rodrigues ACB, Seixas de Melo JS. Aggregation-Induced Emission: From Small Molecules to Polymers-Historical Background, Mechanisms and Photophysics. Top Curr Chem (Cham) 2021; 379:15. [PMID: 33725207 DOI: 10.1007/s41061-021-00327-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 02/12/2021] [Indexed: 12/26/2022]
Abstract
The enhancement of photoluminescence through formation of molecular aggregates in organic oligomers and conjugated organic polymers is reviewed. A historical contextualization of aggregation-induced emission (AIE) phenomena is presented. This includes the loose bolt or free rotor effect and J-aggregation phenomena, and discusses their characteristic features, including structures and mechanisms. The basis of both effects is examined in key molecules, with a particular emphasis on the AIE effect occurring in conjugated organic polymers with a polythiophene (PT) skeleton with triphenylethylene (TPE) units. Rigidification of the excited state structure is one of the defining conditions required to obtain AIE, and thus, by changing from a flexible ground state to rigid (quinoidal-like) structures, oligo and PTs are among the most promising emerging molecules alongside with the more extensively used TPE derivatives. Molecular structures moving away from the domination of aggregation-caused quenching to AIE are presented. Future perspectives for the rational design of AIEgen structures are discussed.
Collapse
Affiliation(s)
- Ana Clara B Rodrigues
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, 3004-535, Coimbra, Portugal
| | - J Sérgio Seixas de Melo
- Department of Chemistry, Coimbra Chemistry Centre, University of Coimbra, 3004-535, Coimbra, Portugal.
| |
Collapse
|
14
|
Shamova LI, Zatsikha YV, Nemykin VN. Synthesis pathways for the preparation of the BODIPY analogues: aza-BODIPYs, BOPHYs and some other pyrrole-based acyclic chromophores. Dalton Trans 2021; 50:1569-1593. [DOI: 10.1039/d0dt03964k] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This mini-review summarizes the synthesis strategies for the preparation and post-functionalization of aza-BODIPYs, BOPHYs, “half-Pcs”, biliazines, MB-DIPYs, semihemiporphyrazines, BOIMPYs, BOPPYs, BOPYPYs, BOAHYs, and BOAPYs.
Collapse
Affiliation(s)
| | | | - Victor N. Nemykin
- Department of Chemistry
- University of Manitoba
- Winnipeg
- Canada
- Department of Chemistry
| |
Collapse
|
15
|
|