1
|
Zhou T, Tan Q, Jiang D, He L, Zhang M. Homo-Mannich Reaction of Cyclopropanols: A Versatile Tool for Natural Product Synthesis. Acc Chem Res 2025; 58:499-515. [PMID: 39823273 DOI: 10.1021/acs.accounts.4c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
ConspectusThe Mannich reaction, involving the nucleophilic addition of an enol(ate) intermediate to an imine or iminium ion, is one of the most widely used synthetic methods for the synthesis of β-amino carbonyl compounds. Nevertheless, the homo-Mannich reaction, which utilizes a homoenolate intermediate as the nucleophilic partner and provides straightforward access to the valuable γ-amino carbonyl compounds, remains underexplored. This can be largely attributed to the difficulties in generation and manipulation of the homoenolate species, despite various homoenolate equivalents that have been developed. Among the homoenolate equivalents developed, cyclopropanol stands out due to its intriguing reactivities endowed by the highly strained cyclopropane. Upon activation by a metal, cyclopropyl alcohol is prone to undergo an endocyclic C(sp3)-C(sp3) bond cleavage to give a homoenolate intermediate or a β-keto radical intermediate, which sets the stage for a diverse range of transformations. This account outlines our recent progress in the development of homo-Mannich reaction of cyclopropanol and its applications in natural product total synthesis. This new methodology can be classified into two subtypes: 1) the homo-Mannich reaction of cyclopropanol with imines or iminium ions and 2) the homo-Mannich-type reaction of cyclopropanol with heteroarenes. Through different ways to generate imines or iminium ions, tandem or sequential reactions of C-H oxidation/homo-Mannich, Bischler-Napieralski/homo-Mannich, and asymmetric allylation/homo-Mannich have been developed, leading to the rapid assembly of core scaffolds of sarpagine, koumine, ibophyllidine, Aspidosperma, Melodinus, and Kopsia alkaloids. Besides the reactions with imines or iminium ions, cyclopropyl alcohol can undergo ring-opening addition to indole and pyrrole rings to deliver core scaffolds of schizozygane and indolizidine alkaloids. Based on these methodology advancements, we have accomplished the asymmetric synthesis of 29 alkaloids belonging to 8 families. In this Account, we present a complete picture of our works concerning synthetic design, method development, and applications in natural product total synthesis. It is anticipated that the development of new methodologies of cyclopropyl alcohol will find broad applications in the realm of natural product synthesis.
Collapse
Affiliation(s)
- Tao Zhou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Qiuyuan Tan
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Dan Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
2
|
Laktsevich-Iskryk M, Hurski A, Ošeka M, Kananovich D. Recent advances in asymmetric synthesis via cyclopropanol intermediates. Org Biomol Chem 2025; 23:992-1015. [PMID: 39670922 DOI: 10.1039/d4ob01746c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Cyclopropanols have attracted significant attention in organic synthesis as versatile three-carbon synthons, as this readily available class of donor-activated cyclopropanes undergoes miscellaneous transformations, either via ring-opening or with retention of the cyclopropane ring. This review summarizes stereoselective and stereoretentive transformations suitable for asymmetric synthesis. The utility of cyclopropanols is discussed for two main strategies: (i) substrate-controlled transformations using enantiomerically enriched cyclopropanol intermediates through a traditional approach, and (ii) the use of nonchiral or racemic cyclopropanols, where asymmetric induction is achieved through a chiral catalyst, representing a direction that has recently emerged.
Collapse
Affiliation(s)
- Marharyta Laktsevich-Iskryk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Alaksiej Hurski
- Republican Scientific Center of Human Issues, Belarusian State University, Minsk 220064, Belarus
- Scientific Testing Center Campilab Ltd., Dynaraŭka 222202, Belarus
| | - Maksim Ošeka
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| | - Dzmitry Kananovich
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618, Tallinn, Estonia.
| |
Collapse
|
3
|
Lin C, Zhang J, Sun Z, Guo Y, Chong Q, Zhang Z, Meng F. Cobalt-Catalyzed Enantioselective Alkenylation of Aldehydes. Angew Chem Int Ed Engl 2024; 63:e202405290. [PMID: 38818654 DOI: 10.1002/anie.202405290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Catalytic enantioselective alkenylation of aldehydes with easily accessible alkenyl halides promoted by a chiral cobalt complex derived from a newly developed tridentate bisoxazolinephosphine is presented. Such processes represent an unprecedented reaction pathway for cobalt catalysis and a general approach that enable rapid construction of highly diversified enantioenriched allylic alcohols containing a 1,1-, 1,2-disubstituted and trisubstituted alkene as well as axial stereogenicity in up to 99 % yield and 99 : 1 er without the need of preformation of alkenyl-metal reagents. DFT calculations revealed the origin of enantioselectivity.
Collapse
Affiliation(s)
- Chuiyi Lin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
| | - Jiwu Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
| | - Zhao Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 152 Louyu Road, Wuhan, Hubei, 430079, China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 1000871, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Mei P, Ma Z, Chen Y, Wu Y, Hao W, Fan QH, Zhang WX. Chiral bisphosphine Ph-BPE ligand: a rising star in asymmetric synthesis. Chem Soc Rev 2024; 53:6735-6778. [PMID: 38826108 DOI: 10.1039/d3cs00028a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Chiral 1,2-bis(2,5-diphenylphospholano)ethane (Ph-BPE) is a class of optimal organic bisphosphine ligands with C2-symmetry. Ph-BPE with its excellent catalytic performance in asymmetric synthesis has attracted much attention of chemists with increasing popularity and is growing into one of the most commonly used organophosphorus ligands, especially in asymmetric catalysis. Over two hundred examples have been reported since 2012. This review presents how Ph-BPE is utilized in asymmetric synthesis and how powerful it is as a chiral ligand or even a catalyst in a wide range of reactions including applications in the total synthesis of bioactive molecules.
Collapse
Affiliation(s)
- Peifeng Mei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Zibin Ma
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Yue Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wei Hao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Qing-Hua Fan
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
5
|
Zhan JL, Zhu L, Bai JN, Liu JB, Zhang SH, Xie YQ, Hu BM, Wang Y, Han WJ. Transition metal-free [3 + 3] annulation of cyclopropanols with β-enamine esters to assemble nicotinate derivatives. Org Biomol Chem 2023; 21:8984-8988. [PMID: 37937487 DOI: 10.1039/d3ob01662e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
A metal-free and efficient approach for the synthesis of structurally important nicotinates through 4-HO-TEMPO-mediated [3 + 3] annulation of cyclopropanols with β-enamine esters is presented. This protocol features high atom efficiency, green waste, simple operation and broad substrate scope. Moreover, the experiments of gram-scale synthesis and recovery of oxidants make this strategy more sustainable and practical.
Collapse
Affiliation(s)
- Jun-Long Zhan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Lin Zhu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang, 455000, P. R. China
| | - Jia-Nan Bai
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Jian-Bo Liu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Shi-Han Zhang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Yao-Qiang Xie
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Bo-Mei Hu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
- Henan Province Key Laboratory of New Opto-electronic Functional Materials, Anyang, 455000, P. R. China
| | - Yang Wang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, 455000, P. R. China.
| | - Wen-Jun Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
- Henan Engineering Research Center of Green Synthesis for Pharmaceuticals, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, P. R. China
| |
Collapse
|
6
|
Jiang D, Tang P, Xiong H, Lei S, Zhang Y, Zhang C, He L, Qiu H, Zhang M. A Homo-Mannich Reaction Strategy Enables Collective Access to Ibophyllidine, Aspidosperma, Kopsia, and Melodinus Alkaloids. Angew Chem Int Ed Engl 2023; 62:e202307286. [PMID: 37490018 DOI: 10.1002/anie.202307286] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/30/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
We report here a homo-Mannich reaction of cyclopropanol with an iminium ion, generated by an asymmetric allylic dearomatization of indole, to construct a tricyclic hydrocarbazole core, which is shared by a variety of monoterpenoid indole alkaloids across families. Through this approach, an all-carbon quaternary stereogenic center as well as an allyl and a ketone group were installed. Using this functionalized hydrocarbazole as the structural platform, D ring and E rings of different sizes (i.e., five-, six-, and seven-membered) were successively or simultaneously assembled, leading to a collective asymmetric synthesis of seven alkaloids belonging to the ibophyllidine, Aspidosperma, Kopsia, and Melodinus alkaloid families.
Collapse
Affiliation(s)
- Dan Jiang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Peng Tang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Hongbing Xiong
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Shuai Lei
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Yulian Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Chongzhou Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Ling He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Hanyue Qiu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| | - Min Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China
| |
Collapse
|
7
|
Wang L, Lin C, Chong Q, Zhang Z, Meng F. Photoredox cobalt-catalyzed regio-, diastereo- and enantioselective propargylation of aldehydes via propargyl radicals. Nat Commun 2023; 14:4825. [PMID: 37563134 PMCID: PMC10415309 DOI: 10.1038/s41467-023-40488-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/26/2023] [Indexed: 08/12/2023] Open
Abstract
Catalytic enantioselective introduction of a propargyl group constitutes one of the most important carbon-carbon forming reactions, as it is versatile to be transformed into diverse functional groups and frequently used in the synthesis of natural products and biologically active molecules. Stereoconvergent transformations of racemic propargyl precursors to a single enantiomer of products via propargyl radicals represent a powerful strategy and provide new reactivity. However, only few Cu- or Ni-catalyzed protocols have been developed with limited reaction modes. Herein, a photoredox/cobalt-catalyzed regio-, diastereo- and enantioselective propargyl addition to aldehydes via propargyl radicals is presented, enabling construction of a broad scope of homopropargyl alcohols that are otherwise difficult to access in high efficiency and stereoselectivity from racemic propargyl carbonates. Mechanistic studies and DFT calculations provided evidence for the involvement of propargyl radicals, the origin of the stereoconvergent process and the stereochemical models.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Chuiyi Lin
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China.
| | - Zhihan Zhang
- CCNU-uOttawa Joint Research Center, Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Louyu Road, Wuhan, 430079, Hubei, China.
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, 200032, Shanghai, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, 310024, Hangzhou, China.
| |
Collapse
|
8
|
Li M, Chong Q, Meng F. Cobalt-Catalyzed Atom-economical and Regioselective Hydroalkylation of N-Boc-2-azetine with Cobalt Homoenolates. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
9
|
Liang Z, Wang L, Wang Y, Wang L, Chong Q, Meng F. Cobalt-Catalyzed Diastereo- and Enantioselective Carbon-Carbon Bond Forming Reactions of Cyclobutenes. J Am Chem Soc 2023; 145:3588-3598. [PMID: 36734874 DOI: 10.1021/jacs.2c12475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Catalytic enantioselective functionalization of cyclobutenes constitutes a general and modular strategy for construction of enantioenriched complex cyclobutanes bearing multiple stereogenic centers, as chiral four-membered rings are common motifs in biologically active molecules and versatile intermediates in organic synthesis. However, enantioselective synthesis of cyclobutanes through such a strategy remained significantly limited. Herein, we report a series of unprecedented cobalt-catalyzed carbon-carbon bond forming reactions of cyclobutenes that are initiated through enantioselective carbometalation. The protocols feature diastereo- and enantioselective introduction of allyl, alkynyl, and functionalized alkyl groups. Mechanistic studies indicated an unusual 1,3-cobalt migration and subsequent β-carbon elimination cascade process occurred in the allyl addition. These new discoveries established a new elementary process for cobalt catalysis and an extension of diversity of nucleophiles for enantioselective transformations of cyclobutenes.
Collapse
Affiliation(s)
- Zhikun Liang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Lei Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Yu Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Lifan Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032.,School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China, 310024
| |
Collapse
|
10
|
Wang L, Lu W, Zhang J, Chong Q, Meng F. Cobalt‐Catalyzed Regio‐, Diastereo‐ and Enantioselective Intermolecular Hydrosilylation of 1,3‐Dienes with Prochiral Silanes. Angew Chem Int Ed Engl 2022; 61:e202205624. [DOI: 10.1002/anie.202205624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Wenxin Lu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Jiwu Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences China
| |
Collapse
|
11
|
Zhai S, Qiu S, Yang S, Gao X, Feng X, Yun C, Han N, Niu Y, Wang J, Zhai H. Facile access to β-hydroxyl ketones via a cobalt-catalyzed ring-opening/hydroxylation cascade of cyclopropanols. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
12
|
Wang L, Lu W, Zhang J, Chong Q, Meng F. Cobalt‐Catalyzed Regio‐, Diastereo‐ and Enantioselective Intermolecular Hydrosilylation of 1,3‐Dienes with Prochiral Silanes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Lei Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Wenxin Lu
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Jiwu Zhang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences 345 Lingling Road Shanghai China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences China
| |
Collapse
|
13
|
Yan H, Smith GS, Chen FE. Recent advances using cyclopropanols and cyclobutanols in ring-opening asymmetric synthesis. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
14
|
Hou L, Huang W, Wu X, Qu J, Chen Y. Nickel-Catalyzed Carbonylation of Cyclopropanol with Benzyl Bromide for Multisubstituted Cyclopentenone Synthesis. Org Lett 2022; 24:2699-2704. [PMID: 35389666 DOI: 10.1021/acs.orglett.2c00798] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Herein, we reported a Ni-catalyzed carbonylation of cyclopropanol with benzyl bromide to afford multisubstituted cyclopentenone under 1 atm of CO. The reaction proceeds through cascade carbonylation of benzyl bromides, followed by generation of nickel homoenolate from cyclopropanols via β-C elimination to afford 1,4-diketones, which undergoes intramolecular Aldol condensation to furnish highly substituted cyclopentenone derivatives in moderate to good yields. The reaction exhibits high functional group tolerance with broad substrate scope.
Collapse
Affiliation(s)
- Liting Hou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wenyi Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xianqing Wu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingping Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yifeng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
15
|
Lu W, Zhao Y, Meng F. Cobalt-Catalyzed Sequential Site- and Stereoselective Hydrosilylation of 1,3- and 1,4-Enynes. J Am Chem Soc 2022; 144:5233-5240. [PMID: 35298144 DOI: 10.1021/jacs.2c00288] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Catalytic sequential hydrosilylation of 1,3-enynes and 1,4-enynes promoted by cobalt complexes derived from bisphosphines are presented. Site- and stereoselective Si-H addition of primary silanes to 1,3-enynes followed by sequential intramolecular diastereo- and enantioselective Si-H addition afforded enantioenriched cyclic alkenylsilanes with simultaneous construction of a carbon-stereogenic center and a silicon-stereogenic center. Reactions of 1,4-enynes proceeded through sequential isomerization of the alkene moiety followed by site- and stereoselective hydrosilylation. A wide range of alkenylsilanes were afforded in high efficiency and selectivity. Functionalization of the enantioenriched silanes containing a stereogenic center at silicon delivered a variety of chiral building blocks that are otherwise difficult to access.
Collapse
Affiliation(s)
- Wenxin Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| | - Yongmei Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing, China, 102249
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China, 200032
| |
Collapse
|