1
|
Zhang C, Wang M, Zhang M. Room Temperature Access to Bridged Nitrogen Ligands via Electroreductive Annulation of 1,10-Phenanthrolines and Imines. Org Lett 2025; 27:4725-4731. [PMID: 40278834 DOI: 10.1021/acs.orglett.5c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
An electroreductive annulation reaction of 1,10-phenanthrolines and imines has been developed. This method proceeds with broad substrate and functionality tolerance, high selectivity, and no need for pressurized H2 gas or transition metal catalysts. Mechanistic studies reveal that the products are formed via simultaneous electroreduction of both proton-activated reactants followed by radical cross-coupling and intramolecular cyclization of the coupling adduct.
Collapse
Affiliation(s)
- Chengqian Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| | - Maorui Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University Guilin 541004, P. R. China
| | - Min Zhang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering and State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
2
|
Liu D, Xiao F, Ebel B, Oppel IM, Patureau FW. Visible-Light-Mediated Radical α-C(sp 3)─H gem-Difluoroallylation of Amides with Trifluoromethyl Alkenes via Halogen Atom Transfer and 1,5-Hydrogen Atom Transfer. Org Lett 2025; 27:2377-2382. [PMID: 40042138 DOI: 10.1021/acs.orglett.5c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Direct gem-difluoroallylation at the α-carbonyl position is a challenging process by conventional methods. Herein we report the photocatalytic radical α-C(sp3)─H gem-difluoroallylation of amides with trifluoromethyl alkenes to access the target compounds with good yields and functional group tolerance. The mild and effective conditions allow gem-difluoroalkene motifs as carbonyl bioisosteres incorporated concisely to some complex molecules, including gemfibrozil and estrone derivatives, presenting great potential for late-stage functionalization of drugs, natural products, and bioactive intermediates. Mechanistic investigations suggest a radical pathway combining XAT and 1,5-HAT.
Collapse
|
3
|
Ding L, Wang M, Liu Y, Lu H, Zhao Y, Shi Z. Stereoselective Vinylic C-H Addition via Metallaphotoredox Migration. Angew Chem Int Ed Engl 2025; 64:e202413557. [PMID: 39322622 DOI: 10.1002/anie.202413557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Geometrically defined allylic alcohols with SE, SZ, RE and RZ stereoisomers serve as valuable intermediates in synthetic chemistry, attributed to the stereoselective transformations enabled by the alkenyl and hydroxyl functionalities. When an ideal scenario presents itself with four distinct stereoisomers as potential products, the simultaneous control vicinal stereochemistry in a single step would offer a direct pathway to any desired stereoisomer. Here, we unveil a metallaphotoredox migration strategy to access stereodefined allylic alcohols through vinylic C-H activation with aldehydes. This method harnesses a chiral nickel catalyst in concert with a photocatalyst to enable a 1,4-Ni migration by using readily accessible 2-vinyl iodoarenes as starting materials. The efficacy of this methodology is highlighted by the precise construction of all stereoisomers of allylic alcohols bearing analogous substituents and the efficient synthesis of key intermediates en route to Myristinin family. Experimental and computational studies have shed light on pivotal aspects including the synergy of metal catalysis and photocatalysis, the driving forces behind the migration, and the determination of absolute configuration in the C-H addition process.
Collapse
Affiliation(s)
- Linlin Ding
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yiming Liu
- Department of Chemistry, University of California, Davis, California, Davis, 95616, United States
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing
- China and School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| |
Collapse
|
4
|
Wang B, Lin H, Chen Z, Zhang Y, Xue F, Xia Y, Wu S, Jin W, Liu C. Divergent Synthesis of Benzo[4,5]imidazo[2,1- b][1,3]thiazines and α-Trifluoromethyl-β-arylthio Tertiary Alcohols from 2-Mercaptobenzimidazoles and α-CF 3 Alkenes. Org Lett 2024; 26:9610-9616. [PMID: 39454077 DOI: 10.1021/acs.orglett.4c03765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
An efficient and metal-free approach for the divergent synthesis of 2-fluoro-3-aryl-4H-benzo[4,5]imidazo[2,1-b][1,3]thiazines and α-trifluoromethyl-β-arylthio tertiary alcohols from 2-mercaptoimidazoles and α-CF3 alkenes has been developed. The chemoselectivity was well controlled by base or light; a series of 2-fluoro-3-aryl-4H-benzo[4,5]imidazo[2,1-b][1,3]thiazines were afforded via base-mediated sequential SN2'- and SNV-type reactions. Meanwhile, α-trifluoromethyl-β-arylthio tertiary alcohols could be selectively achieved through visible-light-driven and electron donor-acceptor (EDA) complex-initiated radical cascade thiolation/hydroxylation in the absence of base, transition metal, and external photocatalyst.
Collapse
Affiliation(s)
- Bin Wang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- Analysis and Testing Center, Xinjiang University, Urumqi 830017, P. R. China
| | - Honghe Lin
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Ziren Chen
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yonghong Zhang
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, P. R. China
| | - Fei Xue
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Yu Xia
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Shaofeng Wu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| | - Weiwei Jin
- Key Laboratory of Specialty Agri-Product Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, P. R. China
| | - Chenjiang Liu
- Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, P. R. China
| |
Collapse
|
5
|
Lian F, Li JL, Xu K. When transition-metal catalysis meets electrosynthesis: a recent update. Org Biomol Chem 2024; 22:4390-4419. [PMID: 38771266 DOI: 10.1039/d4ob00484a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
While aiming at sustainable synthesis, organic electrosynthesis has attracted increasing attention in the past few years. In parallel, with a deeper understanding of catalyst and ligand design, 3d transition-metal catalysis allows the conception of more straightforward synthetic routes in a cost-effective fashion. Owing to their intrinsic advantages, the merger of organic electrosynthesis with 3d transition-metal catalysis has offered huge opportunities for conceptually novel transformations while limiting ecological footprint. This review summarizes the key advancements in this direction published in the recent two years, with specific focus placed on strategy design and mechanistic aspects.
Collapse
Affiliation(s)
- Fei Lian
- School of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China.
| | - Jiu-Ling Li
- School of Medicine, Henan Engineering Research Center of Funiu Mountain's Medicinal Resources Utilization and Molecular Medicine, Pingdingshan University, Pingdingshan 467000, China.
| | - Kun Xu
- College of Chemistry and Life Science, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
6
|
Tian X, Liu Y, Yakubov S, Schütte J, Chiba S, Barham JP. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem Soc Rev 2024; 53:263-316. [PMID: 38059728 DOI: 10.1039/d2cs00581f] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The employment of light and/or electricity - alternatively to conventional thermal energy - unlocks new reactivity paradigms as tools for chemical substrate activations. This leads to the development of new synthetic reactions and a vast expansion of chemical spaces. This review summarizes recent developments in photo- and/or electrochemical activation strategies for the functionalization of strong bonds - particularly carbon-heteroatom (C-X) bonds - via: (1) direct photoexcitation by high energy UV light; (2) activation via photoredox catalysis under irradiation with relatively lower energy UVA or blue light; (3) electrochemical reduction; (4) combination of photocatalysis and electrochemistry. Based on the types of the targeted C-X bonds, various transformations ranging from hydrodefunctionalization to cross-coupling are covered with detailed discussions of their reaction mechanisms.
Collapse
Affiliation(s)
- Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Yuliang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Jonathan Schütte
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
7
|
Lu L, Wang Y, Zhang W, Zhang W, See KA, Lin S. Three-Component Cross-Electrophile Coupling: Regioselective Electrochemical Dialkylation of Alkenes. J Am Chem Soc 2023; 145:22298-22304. [PMID: 37801465 PMCID: PMC10625357 DOI: 10.1021/jacs.3c06794] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
The cross-electrophile dialkylation of alkenes enables the formation of two C(sp3)-C(sp3) bonds from readily available starting materials in a single transformation, thereby providing a modular and expedient approach to building structural complexity in organic synthesis. Herein, we exploit the disparate electronic and steric properties of alkyl halides with varying degrees of substitution to accomplish their selective activation and addition to alkenes under electrochemical conditions. This method enables regioselective dialkylation of alkenes without the use of a transition-metal catalyst and provides access to a diverse range of synthetically useful compounds.
Collapse
Affiliation(s)
- Lingxiang Lu
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Yi Wang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Wendy Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Wen Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Kimberly A. See
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
8
|
Ni YQ, Li DJ, Mei Y, Jiang Y, Zhang JL, He KH, Pan F. Base-Mediated α- gem-Difluoroalkenylations of Aldehydes and Ketones. Org Lett 2023; 25:6784-6789. [PMID: 37672351 DOI: 10.1021/acs.orglett.3c02845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Herein, we present a base-mediated nucleophilic substitution reaction of α-trifluoromethylstyrenes with simple silyl enol ethers, enabling the efficient synthesis of carbonyl-substituted gem-difluoroalkenes. The merit of this protocol is exhibited by its mild reaction conditions, broad substrate scope, and scalable preparation. Notably, this method demonstrates its applicability for late-stage functionalization of structurally complex molecules. Moreover, we illustrate that the resulting products can serve as valuable precursors for the synthesis of diverse medicinally relevant compounds.
Collapse
Affiliation(s)
- Yu-Qing Ni
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Dong-Jie Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yan Mei
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Yan Jiang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Jun-Lei Zhang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| | - Ke-Han He
- School of Science, Xichang University, 1 Xuefu Road, Xichang 615000, People's Republic of China
| | - Fei Pan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, People's Republic of China
| |
Collapse
|
9
|
Tang W, Fan P. Nickel-Catalyzed Cross-Electrophile Ring Opening/ gem-Difluoroallylation of Aziridines. Org Lett 2023; 25:5756-5761. [PMID: 37503939 DOI: 10.1021/acs.orglett.3c01973] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Herein we report a nickel-catalyzed regioselective cross-electrophile ring opening reaction of sulfonyl-protected aziridines with trifluoromethyl-substituted alkenes as the gem-difluoroallylating agents, providing a new and efficient entry to prepare gem-difluorobishomoallylic sulfonamides. Moreover, the scaffold of 6-fluoro-1,2,3,4-tetrahydropyridine can be constructed starting from the ring opening products via NaH-mediated intramolecular defluorinative nucleophilic vinylic substitution.
Collapse
Affiliation(s)
- Wei Tang
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Pei Fan
- School of Chemical and Materials Engineering, Anhui Province Key Laboratory of Low Temperature Co-fired Materials, Huainan Normal University, Huainan, Anhui 232038, P. R. China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
10
|
Xu Y, Wang S, Liu Z, Guo M, Lei A. Photo/Ni dual-catalyzed radical defluorinative sulfonylation to synthesize gem-difluoro allylsulfones. Chem Commun (Camb) 2023; 59:3707-3710. [PMID: 36912357 DOI: 10.1039/d2cc05934g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Radical defluorinative functionalization of α-trifluoromethyl styrenes represents an effective way toward gem-difluoroalkenes. There are general interests in developing novel synthetic protocols for defluorinative functionalization with various types of radicals. However, reports on the preparation of gem-difluoro allylsulfones via an S-centered radical pathway are limited. Herein, we developed a photo/nickel dual-catalyzed defluorinative sulfonylation that rapidly and reliably synthesizes gem-difluoro allylsulfones. The merit of this protocol is exhibited by its mild conditions and wide scope, thus providing a novel strategy for the sulfonyl radical participating in radical defluorinative coupling.
Collapse
Affiliation(s)
- Yiran Xu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Shengchun Wang
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Zhao Liu
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Mian Guo
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences, The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, P. R. China.
| |
Collapse
|
11
|
Yu W, Wang S, He M, Jiang Z, Yu Y, Lan J, Luo J, Wang P, Qi X, Wang T, Lei A. Electroreduction Enables Regioselective 1,2‐Diarylation of Alkenes with Two Electrophiles. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202219166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Weijie Yu
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| | - Meng He
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| | - Zhou Jiang
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Yi Yu
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| | - Jinping Lan
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Jin Luo
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Pengjie Wang
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| | - Xiaotian Qi
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology Jiangxi Normal University Nanchang 330022, Jiangxi P. R. China
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences Wuhan University Wuhan 430072, Hubei P. R. China
| |
Collapse
|
12
|
Yu W, Wang S, He M, Jiang Z, Yu Y, Lan J, Luo J, Wang P, Qi X, Wang T, Lei A. Electroreduction Enables Regioselective 1,2-Diarylation of Alkenes with Two Electrophiles. Angew Chem Int Ed Engl 2023; 62:e202219166. [PMID: 36826413 DOI: 10.1002/anie.202219166] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 02/25/2023]
Abstract
Precisely introducing two similar functional groups into bulk chemical alkenes represents a formidable route to complex molecules. Especially, the selective activation of two electrophiles is in crucial demand, yet challenging for cross-electrophile-coupling. Herein, we demonstrate a redox-mediated electrolysis, in which aryl nitriles are both aryl radical precursors and redox-mediators, enables an intermolecular alkene 1,2-diarylation with a remarkable regioselectivity, thereby avoiding the involvement of transition-metal catalysts. This transformation utilizes cyanoarene radical anions for activating various aryl halides (including iodides, bromides, and even chlorides) and affords 1,2-diarylation adducts in up to 83 % yield and >20 : 1 regioselectivity with more than 80 examples, providing a feasible approach to complex bibenzyl derivatives.
Collapse
Affiliation(s)
- Weijie Yu
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China
| | - Shengchun Wang
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Meng He
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Zhou Jiang
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China
| | - Yi Yu
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Jinping Lan
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China
| | - Jin Luo
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China
| | - Pengjie Wang
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Xiaotian Qi
- The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| | - Tao Wang
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China
| | - Aiwen Lei
- National Research Center for Carbohydrate Synthesis, Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education and Jiangxi Province Key Laboratory of Chemical Biology, Jiangxi Normal University, Nanchang, 330022, Jiangxi, P. R. China.,The Institute for Advanced Studies (IAS) and College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, Hubei, P. R. China
| |
Collapse
|
13
|
Zhang G, Wang L, Cui L, Gao P, Chen F. Deaminative defluoroalkylation of α-trifluoromethylalkenes enabled by photoredox catalysis. Org Biomol Chem 2023; 21:294-299. [PMID: 36510767 DOI: 10.1039/d2ob02114e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herein, we disclose a new photoredox-catalysed strategy to access gem-difluoroallylarenes from α-trifluoromethylalkenes with sterically hindered primary amines via C-N and C-F bond activation. This deaminative and defluorinative allylation is generally compatible with diverse functional groups and sterically hindered α-3° and 2° primary amines.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Liping Cui
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Pan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, China.
| |
Collapse
|
14
|
The synergism of sequential paired electrosynthesis with halogen bonding activation for the cyclization of organochlorides with olefins. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Liu J, Hong Y, Liu YL, Tan JY, Liu HM, Dai GL, Chen SL, Liu T, Li JH, Tang S. Nickel-Catalyzed Radical Heck-Type C(sp 3)–C(sp 2) Coupling Cascades Enabled by Bromoalkane-Directed 1,4-Aryl Shift: Access to Olefinated Arylalanines. Org Lett 2022; 24:8192-8196. [DOI: 10.1021/acs.orglett.2c03250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Jian Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Yu Hong
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Yin-Ling Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Jing-Ying Tan
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Hao-Miao Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Gang-Liang Dai
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, Beijing Institute of Technology, Beijing 100081, China
| | - Ting Liu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China
| |
Collapse
|
16
|
Abstract
Fluorinated organic compounds are common among pharmaceuticals, agrochemicals and materials. The significant strength of the C-F bond results in chemical inertness that, depending on the context, is beneficial, problematic or simply a formidable synthetic challenge. Electrosynthesis is a rapidly expanding methodology that can enable new reactivity and selectivity for cleavage and formation of chemical bonds. Here, a comprehensive overview of synthetically relevant electrochemically driven protocols for C-F bond activation and functionalization is presented, including photoelectrochemical strategies.
Collapse
Affiliation(s)
- Johannes L Röckl
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| | | | - Helena Lundberg
- Department of Chemistry, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden.
| |
Collapse
|
17
|
Wang Q, Yue L, Bao Y, Wang Y, Kang D, Gao Y, Yuan Z. Oxalates as Activating Groups for Tertiary Alcohols in Photoredox-Catalyzed gem-Difluoroallylation To Construct All-Carbon Quaternary Centers. J Org Chem 2022; 87:8237-8247. [PMID: 35612278 DOI: 10.1021/acs.joc.2c00664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Construction of challenging and important all-carbon quaternary centers has received growing attention. Herein, with oxalates as activating groups for tertiary alcohols, we report photoredox-catalyzed gem-difluoroallylation to construct all-carbon quaternary centers enabled by efficient tertiary radical addition to α-trifluoromethyl alkenes. This transformation shows good functional group tolerance for both α-trifluoromethyl alkenes and oxalates. Moreover, this strategy is also successfully applied to the synthesis of monofluoralkenes from the corresponding electron-rich gem-difluoroalkenes and cesium tertiary alkyl oxalates under modified conditions.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Ling Yue
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanyang Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Danni Kang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Yan Gao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, China
| |
Collapse
|
18
|
Gao Y, Qin W, Tian M, Zhao X, Hu X. Defluorinative Alkylation of Trifluoromethyl Alkenes with Soft Carbon Nucleophiles Enabled by a Catalytic Amount of Base. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200328] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ya Gao
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 People's Republic of China
| | - Wei Qin
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 People's Republic of China
| | - Ming‐Qing Tian
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 People's Republic of China
| | - Xuefei Zhao
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 People's Republic of China
| | - Xu‐Hong Hu
- Institute of Advanced Synthesis School of Chemistry and Molecular Engineering Nanjing Tech University 30 South Puzhu Road Nanjing 211816 People's Republic of China
| |
Collapse
|
19
|
Chen W, Ni S, Wang Y, Pan Y. Electrochemical-Promoted Nickel-Catalyzed Reductive Allylation of Aryl Halides. Org Lett 2022; 24:3647-3651. [PMID: 35579336 DOI: 10.1021/acs.orglett.2c01247] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Compared with conventional reductive coupling, reductive coupling under electrochemical conditions without external reductants is greener, milder, and more efficient and is of increasing interest to organic chemists. In this work, we report the sacrificial anode, nickel-catalyzed electrochemical allylation reaction of aryl and alkyl halides. The reaction can be applied to a range of allylation reagents such as trifluoroalkenes, oxalates, and acetates.
Collapse
Affiliation(s)
- Wangzhe Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shengyang Ni
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yi Pan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Li B, Qin H, Yan K, Ma J, Yang J, Wen J. NHPI-catalyzed electrochemical C–H alkylation of indoles with alcohols to access di(indolyl)methanes via radical coupling. Org Chem Front 2022. [DOI: 10.1039/d2qo01498j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present indirect electrochemically mediated radical protocol outperforms the traditional Friedel–Crafts route with a broad substrate scope and functional group tolerance, as well as facile gram-scale synthesis without metal contamination.
Collapse
Affiliation(s)
- Bingwen Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Hongyun Qin
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Kelu Yan
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Jing Ma
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Jianjing Yang
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| | - Jiangwei Wen
- Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Colleges and Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|