1
|
Chai Z, Wu J, Qi Z, Liu Y, Lv Y, Zhang Y, Yu Z, Jiang C, Liu Z. Molecular characterizations and functional roles of NANOG in early development of porcine embryos. Gene 2024; 892:147856. [PMID: 37778417 DOI: 10.1016/j.gene.2023.147856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/11/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023]
Abstract
Nanog homeobox (NANOG) is the gateway to the pluripotent ground state in mouse embryonic stem cells and early embryos. However, understanding of the molecular signatures and functional characteristics of porcine NANOG remains limited. In this study, we analyzed the gene structure and sequence characteristics of porcine NANOG and found that the porcine NANOG gene is localized on chromosome 5, while NANOG sequence on chromosome 1 is the processed pseudogene. We explored the expression pattern of NANOG in porcine early embryos by immunofluorescence staining and Realtime-PCR and RNA-seq, the results showed that transcription of porcine NANOG commences at the 4-cell stage, while expression of the NANOG protein is initially observed in the inner cell mass of blastocysts. Furthermore, we identified a NANOG splicing variant in porcine early embryos, which maintain the overall structure of the original NANOG mRNA, except for a deletion of 38 base pairs in the second exon. To further investigate the function of NANOG in early embryo development in pigs, we employed siRNA-mediated deletion of the two specific transcripts on porcine zygotes. The results showed that blastocyst rate was significantly reduced after NANOG deleting. A significant decrease in the expression of DNA methylation-related gene DNMT3B was also observed in D3 embryo from the NANOG deleting group. In conclusion, the porcine NANOG gene, accompanied by a single-exon processed pseudogene, exhibits two transcripts and plays a pivotal role in the development of early-stage embryos.
Collapse
Affiliation(s)
- Zhuang Chai
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Jing Wu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Zicheng Qi
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Yan Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Yanjiao Lv
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Yuting Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Zhuoran Yu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Chaoqian Jiang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| | - Zhonghua Liu
- College of Life Science, Northeast Agricultural University, Harbin 150030, China; Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
2
|
Donadoni M, Huang W, Yarandi SS, Burdo TH, Chang SL, Sariyer IK. Modulation of OPRM1 Alternative Splicing by Morphine and HIV-1 Nef. J Neuroimmune Pharmacol 2022; 17:277-288. [PMID: 34420144 PMCID: PMC8859008 DOI: 10.1007/s11481-021-10009-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/06/2021] [Indexed: 12/29/2022]
Abstract
Clinically used opioids, such as morphine, activate the mu opioid receptor (MOR) encoded by Opioid Receptor Mu 1 (OPRM1) gene. Examination of the opioid receptor genes showed that the human OPRM1 pre-mRNA undergoes extensive alternative splicing events and capable of expressing 21 isoforms. However, characterization of OPRM1 signaling is generalized, and only one isoform (MOR-1) has been extensively studied. Compounding this issue is the increasing significance of intravenous drug abuse in HIV neuropathogenesis. Here, we investigated the molecular impact of morphine and HIV-1 on regulation of OPRM1 pre-mRNA splicing in in vitro and in vivo models. Our results suggested that morphine treatment specifically induces the alternative splicing of MOR-1X isoform among the other isoforms analyzed in neuronal cells. Interestingly, alternative splicing and expression of MOR-1X isoform was also induced in postmortem brain tissues obtained from people with HIV (PWH). Additionally, treatment of control rats with morphine induced alternative splicing of MOR-1X in the brain regions involved in the reward pathways. More interestingly, HIV-1 transgenic (HIV-1Tg) rats, showed an additive induction of MOR-1X isoform with the exposure to morphine. To further assess the possible role of HIV secretory proteins in alternative splicing of OPRM1 gene, we analyzed the impact of HIV-1 Tat, gp120 and Nef proteins on alternative splicing of MOR-1X isoform. While the Tat and gp120 had no visible effects, treatment of neurons with Nef induced MOR-1X alternative splicing that was comparable to treatment with morphine. Altogether, our results suggest that HIV-1 may alter MOR isoform expression with Nef protein by amplifying the rate of MOR-1X alternative splicing induced by morphine.
Collapse
Affiliation(s)
- Martina Donadoni
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Wenfei Huang
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA
| | - Shadan S Yarandi
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Tricia H Burdo
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Sulie L Chang
- Institute of NeuroImmune Pharmacology and Department of Biological Sciences, Seton Hall University, South Orange, NJ, USA.
| | - Ilker K Sariyer
- Department of Neuroscience and Center for Neurovirology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Zhao Q, Yang W, Qin T, Huang Z. Moonlighting Phosphatase Activity of Klenow DNA Polymerase in the Presence of RNA. Biochemistry 2018; 57:5127-5135. [PMID: 30059615 DOI: 10.1021/acs.biochem.8b00688] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
RNA is a key player in the cellular central dogma, including RNA transcription and protein synthesis. However, it is unknown whether RNA can directly interfere with DNA synthesis. Recently, we have found in vitro that while binding to DNA polymerase nonspecifically, RNA can transform DNA polymerase to display a moonlighting activity, dNTP phosphatase, in turn interfering with DNA synthesis. This phosphatase activity removes the γ-phosphate from dNTPs (generating dNDPs) and subsequently removes the β-phosphate from the formed dNDPs (generating dNMPs), confirmed by the noncleavable α,β-CH2-dGTP and β,γ-CH2-dGTP analogues. We also found that dGTP is the best substrate for the phosphatase, and the dNTP phosphatase activity is sensitive to the reaction medium. In addition, we have revealed that RNA can tune the activity of closely related proteins and give rise to new catalytic functions with subtle differences. Moreover, we have demonstrated in vitro that at the lower dNTP level, this phosphatase can directly inhibit DNA synthesis by dNTP depletion, though the phosphatase activity is 690-fold slower than the polymerase activity. Our observation in vitro suggests a plausible strategy for RNA to directly interfere with DNA polymerase and DNA synthesis in vivo.
Collapse
Affiliation(s)
- Qianwei Zhao
- College of Life Sciences , Sichuan University , Chengdu , China
| | - Wen Yang
- College of Life Sciences , Sichuan University , Chengdu , China
| | - Tong Qin
- College of Life Sciences , Sichuan University , Chengdu , China
| | - Zhen Huang
- College of Life Sciences , Sichuan University , Chengdu , China.,Department of Chemistry , Georgia State University , Atlanta , Georgia 30303 , United States
| |
Collapse
|
4
|
Gonzalez-Hilarion S, Paulet D, Lee KT, Hon CC, Lechat P, Mogensen E, Moyrand F, Proux C, Barboux R, Bussotti G, Hwang J, Coppée JY, Bahn YS, Janbon G. Intron retention-dependent gene regulation in Cryptococcus neoformans. Sci Rep 2016; 6:32252. [PMID: 27577684 PMCID: PMC5006051 DOI: 10.1038/srep32252] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/03/2016] [Indexed: 01/28/2023] Open
Abstract
The biological impact of alternative splicing is poorly understood in fungi, although recent studies have shown that these microorganisms are usually intron-rich. In this study, we re-annotated the genome of C. neoformans var. neoformans using RNA-Seq data. Comparison with C. neoformans var. grubii revealed that more than 99% of ORF-introns are in the same exact position in the two varieties whereas UTR-introns are much less evolutionary conserved. We also confirmed that alternative splicing is very common in C. neoformans, affecting nearly all expressed genes. We also observed specific regulation of alternative splicing by environmental cues in this yeast. However, alternative splicing does not appear to be an efficient method to diversify the C. neoformans proteome. Instead, our data suggest the existence of an intron retention-dependent mechanism of gene expression regulation that is not dependent on NMD. This regulatory process represents an additional layer of gene expression regulation in fungi and provides a mechanism to tune gene expression levels in response to any environmental modification.
Collapse
Affiliation(s)
- Sara Gonzalez-Hilarion
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015, Paris, France
| | - Damien Paulet
- Institut Pasteur, Plate-forme transcriptome et Epigénome, Département Génomes et Génétique, F-75015, Paris, France
| | - Kyung-Tae Lee
- Department of Biotechnology, College of Life and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Chung-Chau Hon
- RIKEN Center for Life Science Technologies, Yokohama Institute, Division of Genomic Technology, Yokohama, 230-0045, Japan
| | - Pierre Lechat
- Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, F-75015, Paris, France
| | - Estelle Mogensen
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015, Paris, France
| | - Frédérique Moyrand
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015, Paris, France
| | - Caroline Proux
- Institut Pasteur, Plate-forme transcriptome et Epigénome, Département Génomes et Génétique, F-75015, Paris, France
| | - Rony Barboux
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015, Paris, France
| | - Giovanni Bussotti
- Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, F-75015, Paris, France
| | - Jungwook Hwang
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul, Korea
| | - Jean-Yves Coppée
- Institut Pasteur, Plate-forme transcriptome et Epigénome, Département Génomes et Génétique, F-75015, Paris, France
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life and Biotechnology, Yonsei University, Seoul 03722, Korea
| | - Guilhem Janbon
- Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015, Paris, France
| |
Collapse
|
5
|
Regan PM, Langford TD, Khalili K. Regulation and Functional Implications of Opioid Receptor Splicing in Opioid Pharmacology and HIV Pathogenesis. J Cell Physiol 2016; 231:976-85. [PMID: 26529364 PMCID: PMC4728022 DOI: 10.1002/jcp.25237] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 11/02/2015] [Indexed: 12/18/2022]
Abstract
Despite the identification and characterization of four opioid receptor subtypes and the genes from which they are encoded, pharmacological data does not conform to the predications of a four opioid receptor model. Instead, current studies of opioid pharmacology suggest the existence of additional receptor subtypes; however, no additional opioid receptor subtype has been identified to date. It is now understood that this discrepancy is due to the generation of multiple isoforms of opioid receptor subtypes. While several mechanisms are utilized to generate these isoforms, the primary mechanism involves alternative splicing of the pre-mRNA transcript. Extensive alternative splicing patterns for opioid receptors have since been identified and discrepancies in opioid pharmacology are now partially attributed to variable expression of these isoforms. Recent studies have been successful in characterizing the localization of these isoforms as well as their specificity in ligand binding; however, the regulation of opioid receptor splicing specificity is poorly characterized. Furthermore, the functional significance of individual receptor isoforms and the extent to which opioid- and/or HIV-mediated changes in the opioid receptor isoform profile contributes to altered opioid pharmacology or the well-known physiological role of opioids in the exacerbation of HIV neurocognitive dysfunction is unknown. As such, the current review details constitutive splicing mechanisms as well as the specific architecture of opioid receptor genes, transcripts, and receptors in order to highlight the current understanding of opioid receptor isoforms, potential mechanisms of their regulation and signaling, and their functional significance in both opioid pharmacology and HIV-associated neuropathology.
Collapse
Affiliation(s)
- Patrick M. Regan
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - T. Dianne Langford
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Kamel Khalili
- Department of Neuroscience and Center for Neurovirology, Temple University School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
6
|
Regan PM, Sariyer IK, Langford TD, Datta PK, Khalili K. Morphine-induced MOR-1X and ASF/SF2 Expressions Are Independent of Transcriptional Regulation: Implications for MOR-1X Signaling. J Cell Physiol 2015; 231:1542-53. [PMID: 26553431 DOI: 10.1002/jcp.25246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/05/2015] [Indexed: 01/13/2023]
Abstract
Recently, multiple μ-opioid receptor (MOR) isoforms have been identified that originate from a single gene, OPRM1; however, both their regulation and their functional significance are poorly characterized. The objectives of this study were to decipher, first, the regulation of alternatively spliced μ-opioid receptor isoforms and the spliceosome components that determine splicing specificity and, second, the signaling pathways utilized by particular isoforms both constitutively and following agonist binding. Our studies demonstrated that the expression of a particular splice variant, MOR-1X, was up-regulated by morphine, and this coincided with an increase in the essential splicing factor ASF/SF2. Structural comparison of this isoform to the prototypical variant MOR-1 revealed that the unique distal portion of the C-terminal domain contains additional phosphorylation sites, whereas functional comparison found distinct signaling differences, particularly in the ERK and p90 RSK pathways. Additionally, MOR-1X expression significantly reduced Bax expression and mitochondrial dehydrogenase activity, suggesting a unique functional consequence for MOR-1X specific signaling. Collectively, these findings suggest that alternative splicing of the MOR is altered by exogenous opioids, such as morphine, and that individual isoforms, such as MOR-1X, mediate unique signal transduction with distinct functional consequence. Furthermore, we have identified for the first time a potential mechanism that involves the essential splicing factor ASF/SF2 through which morphine regulates splicing specificity of the MOR encoding gene, OPRM1.
Collapse
Affiliation(s)
- Patrick M Regan
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ilker K Sariyer
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - T Dianne Langford
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Prasun K Datta
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Kamel Khalili
- Department of Neuroscience and Center for Neurovirology, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Pan K, Lee JTH, Huang Z, Wong CM. Coupling and coordination in gene expression processes with pre-mRNA splicing. Int J Mol Sci 2015; 16:5682-96. [PMID: 25768347 PMCID: PMC4394499 DOI: 10.3390/ijms16035682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/28/2015] [Accepted: 03/04/2015] [Indexed: 12/13/2022] Open
Abstract
RNA processing is a tightly regulated and highly complex pathway which includes transcription, splicing, editing, transportation, translation and degradation. It has been well-documented that splicing of RNA polymerase II medicated nascent transcripts occurs co-transcriptionally and is functionally coupled to other RNA processing. Recently, increasing experimental evidence indicated that pre-mRNA splicing influences RNA degradation and vice versa. In this review, we summarized the recent findings demonstrating the coupling of these two processes. In addition, we highlighted the importance of splicing in the production of intronic miRNA and circular RNAs, and hence the discovery of the novel mechanisms in the regulation of gene expression.
Collapse
|
8
|
Incorporating significant amino acid pairs and protein domains to predict RNA splicing-related proteins with functional roles. J Comput Aided Mol Des 2014; 28:49-60. [PMID: 24442949 DOI: 10.1007/s10822-014-9706-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 01/07/2014] [Indexed: 12/20/2022]
Abstract
Machinery of pre-mRNA splicing is carried out through the interaction of RNA sequence elements and a variety of RNA splicing-related proteins (SRPs) (e.g. spliceosome and splicing factors). Alternative splicing, which is an important post-transcriptional regulation in eukaryotes, gives rise to multiple mature mRNA isoforms, which encodes proteins with functional diversities. However, the regulation of RNA splicing is not yet fully elucidated, partly because SRPs have not yet been exhaustively identified and the experimental identification is labor-intensive. Therefore, we are motivated to design a new method for identifying SRPs with their functional roles in the regulation of RNA splicing. The experimentally verified SRPs were manually curated from research articles. According to the functional annotation of Splicing Related Gene Database, the collected SRPs were further categorized into four functional groups including small nuclear Ribonucleoprotein, Splicing Factor, Splicing Regulation Factor and Novel Spliceosome Protein. The composition of amino acid pairs indicates that there are remarkable differences among four functional groups of SRPs. Then, support vector machines (SVMs) were utilized to learn the predictive models for identifying SRPs as well as their functional roles. The cross-validation evaluation presents that the SVM models trained with significant amino acid pairs and functional domains could provide a better predictive performance. In addition, the independent testing demonstrates that the proposed method could accurately identify SRPs in mammals/plants as well as effectively distinguish between SRPs and RNA-binding proteins. This investigation provides a practical means to identifying potential SRPs and a perspective for exploring the regulation of RNA splicing.
Collapse
|
9
|
Grech G, Pollacco J, Portelli M, Sacco K, Baldacchino S, Grixti J, Saliba C. Expression of different functional isoforms in haematopoiesis. Int J Hematol 2013; 99:4-11. [PMID: 24293279 DOI: 10.1007/s12185-013-1477-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 11/18/2013] [Accepted: 11/18/2013] [Indexed: 12/26/2022]
Abstract
Haematopoiesis is a complex process regulated at various levels facilitating rapid responses to external factors including stress, modulation of lineage commitment and terminal differentiation of progenitors. Although the transcription program determines the RNA pool of a cell, various mRNA strands can be obtained from the same template, giving rise to multiple protein isoforms. The majority of variants and isoforms co-occur in normal haematopoietic cells or are differentially expressed at various maturity stages of progenitor maturation and cellular differentiation within the same lineage or across lineages. Genetic aberrations or specific cellular states result in the predominant expression of abnormal isoforms leading to deregulation and disease. The presence of upstream open reading frames (uORF) in 5' untranslated regions (UTRs) of a transcript, couples the utilization of start codons with the cellular status and availability of translation initiation factors (eIFs). In addition, tissue-specific and cell lineage-specific alternative promoter use, regulates several transcription factors producing transcript variants with variable 5' exons. In this review, we propose to give a detailed account of the differential isoform formation, causing haematological malignancies.
Collapse
Affiliation(s)
- Godfrey Grech
- Department of Pathology, Medical School, University of Malta, Msida, MSD2090, Malta,
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
NF1 (neurofibromatosis type I) is a common genetic disease that affects one in 3500 individuals. The disease is completely penetrant but shows variable phenotypic expression in patients. NF1 is a large gene, and its pre-mRNA undergoes alternative splicing. The NF1 protein, neurofibromin, is involved in diverse signalling cascades. One of the best characterized functions of NF1 is its function as a Ras-GAP (GTPase-activating protein). NF1 exon 23a is an alternative exon that lies within the GAP-related domain of neurofibromin. This exon is predominantly included in most tissues, and it is skipped in CNS (central nervous system) neurons. The isoform in which exon 23a is skipped has 10 times higher Ras-GAP activity than the isoform in which exon 23a is included. Exon 23a inclusion is tightly regulated by at least three different families of RNA-binding proteins: CELF {CUG-BP (cytosine-uridine-guanine-binding protein) and ETR-3 [ELAV (embryonic lethal abnormal vision)-type RNA-binding protein]-like factor}, Hu and TIA-1 (T-cell intracellular antigen 1)/TIAR (T-cell intracellular antigen 1-related protein). The CELF and Hu proteins promote exon 23a skipping, while the TIA-1/TIAR proteins promote its inclusion. The widespread clinical variability that is observed among NF1 patients cannot be explained by NF1 mutations alone and it is believed that modifier genes may have a role in the variability. We suggest that the regulation of alternative splicing may act as a modifier to contribute to the variable expression in NF1 patients.
Collapse
|
11
|
Aksaas AK, Larsen AC, Rogne M, Rosendal K, Kvissel AK, Skålhegg BS. G-patch domain and KOW motifs-containing protein, GPKOW; a nuclear RNA-binding protein regulated by protein kinase A. J Mol Signal 2011; 6:10. [PMID: 21880142 PMCID: PMC3179746 DOI: 10.1186/1750-2187-6-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Accepted: 08/31/2011] [Indexed: 12/28/2022] Open
Abstract
Background Post-transcriptional processing of pre-mRNA takes place in several steps and requires involvement of a number of RNA-binding proteins. How pre-mRNA processing is regulated is in large enigmatic. The catalytic (C) subunit of protein kinase A (PKA) is a serine/threonine kinase, which regulates numerous cellular processes including pre-mRNA splicing. Despite that a significant fraction of the C subunit is found in splicing factor compartments in the nucleus, there are no indications of a direct interaction between RNA and PKA. Based on this we speculate if the specificity of the C subunit in regulating pre-mRNA splicing may be mediated indirectly through other nuclear proteins. Results Using yeast two-hybrid screening with the PKA C subunit Cbeta2 as bait, we identified the G-patch domain and KOW motifs-containing protein (GPKOW), also known as the T54 protein or MOS2 homolog, as an interaction partner for Cbeta2. We demonstrate that GPKOW, which contains one G-patch domain and two KOW motifs, is a nuclear RNA-binding protein conserved between species. GPKOW contains two sites that are phosphorylated by PKA in vitro. By RNA immunoprecipitation and site directed mutagenesis of the PKA phosphorylation sites we revealed that GPKOW binds RNA in vivo in a PKA sensitive fashion. Conclusion GPKOW is a RNA-binding protein that binds RNA in a PKA regulated fashion. Together with our previous results demonstrating that PKA regulates pre-mRNA splicing, our results suggest that PKA phosphorylation is involved in regulating RNA processing at several steps.
Collapse
|
12
|
Ontological hypothesis of the cancer etiology: discord between cells' survival determinism and their disposition to biological altruism. Med Hypotheses 2011; 77:389-400. [PMID: 21684694 DOI: 10.1016/j.mehy.2011.05.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2010] [Revised: 02/28/2011] [Accepted: 05/25/2011] [Indexed: 11/23/2022]
Abstract
During the last decades, scientific community has implicitly viewed cancer as a number of different diseases with the same underlying phenotype. Such a view was justified for the fact that some of the genetic and phenotypic similarities, observed in different types of tumors, were perpetuated via some distinct mechanisms. Nevertheless, this manuscript aims to interpret all of these differences in a context of the same underlying cause. To do so, the epigenetic and genetic alterations observed in cancers are initially interpreted in the context of their advantage for the evolution of the early eukaryotic organisms. Subsequently, the proposed premises are further discussed with respect to their propagation in the subsequent generations of the new eukaryotic species, as well as their role in the development of the higher organisms. In the subsequent section, the role of the proposed mechanism is discussed in the context of cancer, which is proposed to originate due to the analogous underlying mechanisms. Finally, the proposed mechanism is briefly discussed in parallel with some other contemporary theories of carcinogenesis, aiming to further support its validity. Thereby, the model presents an alternative interpretation of multiple cancer-related biomedical phenomena from the aspect of a proposed evolutionary mechanism.
Collapse
|
13
|
Focused on Frontier Sciences and Dedicated to Academic Exchanges-<I>Science China: Life Sciences</I> in 2009 at a New Beginning. PROG BIOCHEM BIOPHYS 2011. [DOI: 10.3724/sp.j.1206.2010.00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
The Recent Progress of Non-coding RNA and RNomics. PROG BIOCHEM BIOPHYS 2010. [DOI: 10.3724/sp.j.1206.2010.00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
Research frontiers highlighted in Science China Life Sciences in 2009. CHINESE SCIENCE BULLETIN-CHINESE 2010. [DOI: 10.1007/s11434-010-4229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 2010; 11:345-55. [DOI: 10.1038/nrg2776] [Citation(s) in RCA: 756] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
17
|
Davidson S, Starkey A, MacKenzie A. Evidence of uneven selective pressure on different subsets of the conserved human genome; implications for the significance of intronic and intergenic DNA. BMC Genomics 2009; 10:614. [PMID: 20015390 PMCID: PMC2807880 DOI: 10.1186/1471-2164-10-614] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 12/16/2009] [Indexed: 01/13/2023] Open
Abstract
Background Human genetic variation produces the wide range of phenotypic differences that make us individual. However, little is known about the distribution of variation in the most conserved functional regions of the human genome. We examined whether different subsets of the conserved human genome have been subjected to similar levels of selective constraint within the human population. We used set theory and high performance computing to carry out an analysis of the density of Single Nucleotide Polymorphisms (SNPs) within the evolutionary conserved human genome, at three different selective stringencies, intersected with exonic, intronic and intergenic coordinates. Results We demonstrate that SNP density across the genome is significantly reduced in conserved human sequences. Unexpectedly, we further demonstrate that, despite being conserved to the same degree, SNP density differs significantly between conserved subsets. Thus, both the conserved exonic and intronic genomes contain a significantly reduced density of SNPs compared to the conserved intergenic component. Furthermore the intronic and exonic subsets contain almost identical densities of SNPs indicating that they have been constrained to the same degree. Conclusion Our findings suggest the presence of a selective linkage between the exonic and intronic subsets and ascribes increased significance to the role of introns in human health. In addition, the identification of increased plasticity within the conserved intergenic subset suggests an important role for this subset in the adaptation and diversification of the human population.
Collapse
Affiliation(s)
- Scott Davidson
- School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB252ZD, UK
| | | | | |
Collapse
|